
•

. ~ I]

Copyright (C) 1980 Roy Soltoff

EEEEEEE DODD A ssssss
EE DDDDD AA AA ss ss
EEEEE DD DD AA AA ss
EEEEE DD DD AAAAAAA ssssss
EE DD DD AA AA ss
EEEEEEE DODOO AA AA ss ss
EEEEEEE DODD AA AA ssssss

Model I, Model II, Model I II, & LOOS

Editor Assembler Reference Manual

Copyright (C) 1980 by MISOSYS
All rights reserved

6.x

Reproduction in any manner, electronic, mechanical, magnetic, optical,
chemical, manual, or otherwise, without written permission, is prohibited.

MISOSYS
P.O. Box 4848

Alexandria, Virginia 22303-0848

* * * N O T I C E * * *
* * * L I M I T E D W A R R A N T Y * * *

MISOSYS shall have no liability or responsibility to the purchaser or
any other person, company, or entity with respect to any liability, loss, or
damage caused or alleged to have been caused by this product, including but
not limited to any interruption of service, loss of business and anticipatory
profits, or consequential damages resulting from the operation or use of this
program.

Should this program recording or recording media prove to be defective
in manufacture, labeling, or packaging, MISOSYS will replace the program upon
return of the program package to MISOSYS within 90 days of the date of
purchase. Except for this replacement policy, the sale or subsequent use of
this program material is without warranty or liability.

* * * W A R N I N G * * *
This program package is copyrighted with all rights reserved. The

distribution and sale of this program is intended for the personal use of the
original purchaser only and for use only on the computer system noted herein.
Furthermore, copying, duplicating, selling, or otherwise distributing this
product is expressly forbidden. In accepting this product, the purchaser
recognizes and accepts this agreement.

MISOSYS
P. 0. Box 4848

Alexandria, Virginia 22303-0848
703-960-2998

Pref ace

EDAS is an evolutionary product. It has been designed to provide many
useful assembler capabilities for the most discriminating programmer while at
the same time, its command syntax and ease of use provide for an excellent
assembler language development tool for the programmer from beginner through
advanced level. Its editing syntax has been implemented to appear identical
to that found in the '80s BASIC interpreter so as to provide a high degree of
familiarity and minimal training requirements.

Although considerable effort was expended to make the user reference
manual as complete as possible, this documentation package in no way is to be
considered an instructive guide into the writing of Z-80 source programse
Many reference texts are available that deal with learning and improving your
abilities to program in assembly language. If you are learning assembly
language, your reference materials should include at least one of the many
good texts on the market, an asortment of periodicals, and a good
disassembler.

My advice is to peruse the contents of this reference manual to
familiarize yourself with its information and the Editor Assembler 1 s
capabilities as well as the Utility Applications included on the distribution
diskette. If you have any questions concerning this application, feel free to
call or write; however, be prepared to give your EDAS registration number. It
would also be helpful to make sure your questions are not answered in the
manual.

Speaking of registrations, MISOSYS would like to provide you with the
best technical support possible. To provide this support, we need to know who
our customers are. So please fill out the registration form packaged with the
diskette and return it to us promptly - postal card postage is sufficient.
The registration number located on the diskette label must be entered onto
the registration card and should also be entered in the space provided below.
The registration number must be mentioned on all correspondance with us or
when telephoning for service, so don't lose it. Thank you.

EDAS Registration 8 2 I ¢'-! ¢

- i -

<<***>>
<<*'**>>
<<****** MISOSYS EDAS Editor Assembler IV *****>>
<<****** Copyright 198j, by Roy Soltoff *****>>
<<***>>
<<***>>

Preface
Introduction
Notation Conventions
Executing EDAS

Table of Contents

Assembly Language Syntax .••••••••.••••••••••••••.••••
Labels
Operands
Comments
Expressions
Z-80 Status Indicators (Flags) ••••••••••••••••••.••••
Pseudo-Ops
Assembler Directives
Macro Processor
EDAS Command Summary
EDAS Command Details

Assemble
Branch
Change
C op y • • • • • • • • • • • • • • • • • • • o •

i
1-1
1-2
2-1
3-1
3-1
3-2
3-3
3-4
3-9
4-1
5-1
6-1
7-1
7-3
7-3

7-10
7-11
7-13
7-15
7-16

Delete
Edit
Find • • • • • • • • 7-18
Hardcopy •..••.......•..•.....•.••..••.•...•.•...
Insert
Kill filespec .••••••••.•••.•..••••.•.•••••••••..
Load filespec ..•..••.•.•..•••••••••••••••.•.••.••
Move
Renumber
Print
Query Directory
Replace
Switch Case
Type
Usage, Memory

7-19
7-20
7-21
7-22
7-24
7-26
7-27
7-28
7-29
7-30
7-31
7-32

View filespec •.••••••••••••••.••..•.•.
Write filespec .••••••••••••.....•..•••

.•••••••••. 7-33
••••••.•••• 7-34

extend
One (1)

Cross Reference Utility
Tape To Disk Utility
Error Messages
Technical Specifications
Z-80 Quick Reference Card

7-36
7-37
8-1
9-1

10-1
•••••••.•..•.•••..•••••..•••• 11-1
• • • • • . . • . . . • . • • • • • • • • • • • Appendix

Fifth Edition 1983

Addendum for EDAS release 4.3

Distribution Disks

The Model I/III EDAS 4.3 version and each of its utilities, are single
programs that work on both the Model I and III under LOOS 5.x, DOSPLUS 3.5,
TRSDOS 2.3, and TRSDOS 1.3. The package includes EDAS/CMD, MED/CMD, MAS/CMD,
ADDCTLZ/TXT, XREF/CMD, TTD/CMD, SAID/CMD, and SAIDINS/CMD. It is distributed
on a 35 track single density data diskette. Model III TRSDOS 1.3 users will
need to use their CONVERT utility and a two-drive system to transfer the
files from the master disk to a working system disk. Model I TRSDOS 2.3 users
need to first modify their TRSDOS system via a one-byte patch prior to
transferring the files from the master disk to a working system disk (see
"Model I TRSDOS 2.3 Patch"). The master disk is readable by LOOS and DOSPLUS.
Use under DOSPLUS 3.5 requires patches to EDAS, MED, MAS, and SAID! The patch
fi"les are DPEDAS/PAT, DPMED/PAT, DPMAS/PAT, and DPSAID/PAT. The TRSDOS 6.x
EDAS Version 4.3 is distributed on a 40 track double density data diskette;
TTD/CMD is not included with the TRSDOS 6.x version.

Model I TRSDOS 2.3 Patch

Model I TRSDOS users will find difficulty in reading the distribution
disk due to the data address mark used for the directory. Therefore, before
making a BACKUP or copying EDAS files from the diskette, you will need to
change one byte of the TRSDOS 2.3 disk driver using one of the following
three methods. This change will not affect the operation of your TRSDOS.

Method (1) directly modifies the system diskette with a patch. To
prepare for this patch, obtain a fresh BACKUP of your TRSDOS 2.3 to use for
this operation. Then enter the following BASIC program and RUN it. After you
RUN the program, re-BOOT your TRSDOS diskette to correct the byte in memory.

10 OPEN 11 R11 ,l, 11 SYSO/SYS.WKIA:0 11

2U FIELD 1,171 AS Rl$, 1 AS RS$, 84 AS R2$
30 GET 1,3: LSET RS$= 11<11

: PUT 1,3: CLOSE: END

Method (2) uses DEBUG to change the byte in memory. Use this if you do
not want to patch your TRSDOS system diskette and are familiar with DEBUG.

1. At TRSDOS Ready, type DEBUG followed by <ENTER>.
2. Depress the <BREAK> key to enter the DEBUGger.
3. Type M46BO followed by the <SPACE> bar.
4. Type 3C followed by <ENTER>.
5. Type G402D followed by <ENTER>.

Method (3) uses a POKE from BASIC to change the value directly in
memory. This procedure is as follows:

1. Enter BASIC (files= 0, protect no memory)
2. Type POKE &H46B0,60 followed by <ENTER>.
3. Type CMD"S followed by <ENTER>.

Now, after using any one of the methods noted above, COPY the EDAS files from
the master diskette to your TRSDOS system diskette.

EDAS 4.3 - 1

Addendum for EDAS release 4.3

The EDAS Facility

The MISOSYS editor assembler 4.3 includes the following files:

ADDCTLZ/TXT - a text file with <ENTER> followed by CTL-Z
EDAS/CMD - a combined line editor and macro assembler
MAS/CMD - a stand-alone macro assembler
MED/CMD - a stand-alone line editor
SAID/CMD - a stand-alone full-screen text editor
SAIDINS/CMD - SAID installation program
TTD/CMD - a source cassette Tape-to-Disk convertor
XREF/CMD - a symbol cross-reference listing generator

It is necessary that all source text to EDAS, MED, or MAS must have a
Control-Z (lAH) as the last character of the text. This byte must immediately
follow a CARRIAGE RETURN (OOH). If you are using an editor other than MED or
SAID to prepare your source text, and that editor does not terminate the text
file with a CONTROL-Z, you may have difficulty in using the file with the
assembler. If such is the case, you can either (1) APPEND the file named
ADDCTLZ/TXT to your file, or (2) load your file into SAID and resave it.

Macro invocations as well as macro definitions may be
definitions, the inner macro will not be defined until
expanded via an invocation.

nested. In nested
the outer macro is

Operand expressions may also contain the following operators: .LT.,
.LE., .GT., .GE., .HIGH., .LOW., .SHL., and .SHR ••

Additional conditional assembly pseudo-OPs are: IFl, IF2, and IF3.

The "*PREFIX" assemblr directive has been dropped; however, the local
label string substitution has been expanded to three characters. EDAS
supports "*INCLUDE" to be equivalent to "*GET"; however, MAS uses "*INCLUDE"
to 11 get 11 the file noted via "+I=filespec" on the command line invocation.

The underline, 11
_", is now supported as the first character of a

symbolic l abe 1.

Executing EDAS

The 11 MEM" parameter has been dropped from EDAS due to its low level of
applicability. The ECM parameter has been added for LOOS users. The previous
version 4.1 used the LOOS Extended Cursor Mode (ECM) of the keyboard driver.
That facility permitted the differentiation of the UP-ARROW key versus the
left bracket 11

[
11 so as to permit a full 128-character ASCII input. Version

4.3 defaults to normal keyboard operation to be usable under TRSDOS and
DOSPLUS. The LOOS user may specify the ECM parameter to force the use of the
ECM option on the LOOS KI/DVR. The default is normal Kl operation. Do not use
the ECM parameter for DOSPLUS or TRSDOS.

EDAS 4.3 - 2

Addendum for EDAS release 4.3

The JCL parameter is applicable only to LOOS. TRSDOS 1.3 users need to
enter parameter values in the following hexadecimal format: Oxxxx, where 11 x 11

stands for a hexadecimal digit 0-9, A-F. The 11 EXT=ext 11 parameter is valid
only for LOOS users.

Executing MAS

MAS is a stand-alone macro assembler. It can be used to assemble a disk
file without going through a procedure of loading the file then assembling it
from memory. MAS provides a command line rich in features. The syntax is:

MAS source/ASM [+L=listing/PRN +O=object/CMD +X=reference/REF
+S=symbol/SYM +I=include/ASM J [assembler switches]
[(pl=valuel,p2=value2,p3=value3,p4=value4,LINES=n)J

+L=listing/PRN - send listing to spec in lieu of *DO.
Use -LP for printer (or +L=*PR if DOS
supported). Will inhibit -NL and -LP.

+O=object/CMD - send object to spec in lieu of 11 source/CMD 11
•

Will inhibit -NO.

+X=reference/REF - send cross reference data to spec in lieu
of "source/REF" if -XR switch invoked.
Will invoke -XR.

+S=symbol/SVM - send symbol table to spec in lieu of *DO or
*PR depending on setting of -WS and -LP
switches. Will invoke -WS.

+I=include/ASM - use spec for "*INCLUDE" assembler directive
which is similar to "*GET".

Assembler switches:
-NL -WO -LP -WS -WE -NE -XR -NC -NM -CI -NH -SL
-MF means search macro table first (prior to OP
-NO means suppress the object code generation

(ignored if +O used)

Parms:
- as in manual.

as in manual
code table)

Pl-P4
LINES=n - set printed lines per page ton (abbrev=L).

Executing MED

MED is the line editor portion of EDAS. It supports all EDAS commands
except for the 11 A11 command. It is invoked with the same syntax as EDAS;
however, it does not support the 11 Pn 11 parameters.

EDAS 4.3 - 3

Addendum for EDAS release 4.3

Symbolic Labels

The underline character, 11 11
, is now supported as the first character of

a symbolic label. This has been instituted to further the support of the C
language.

The dot operators are no longer classified as reserved words; any may
now be used as a symbol name. Those dropped from the reserved word list
include: AND, MOD, NOT, OR, XOR, EQ, NE.

Express ions

Support for the following operators has been added in release 4.3.

Operator Function Example

.GE. greater than or equal to val uel. GE.val ue2

.GT. greater than

.LE. less than or equal to

.LT. less than

.SHL. shift valuel left

.SHR. shift valuel right

.HIGH. obtain high order byte

.LOW. obtain low order byte

Logical GREATER-THAN-OR-EQUAL-TO (.GE.)

This is a binary operator
resultant value is TRUE if the left

0000 Tl EQU 1. GE. 2
FFFF T2 EQU 2.GE.2

Logica 1 GREATER-THAN (.GT.)

This is a binary
resultant value is TRUE if

0000
0000

Tl
T2

EQU
EQU

operator
the left

1. GT. 2
2. GT. 2

that
term

that
term

valuel.GT.value2

valuel.LE. value2

valuel.LT.value2

valuel.SHL.value2

valuel.SHR.value2

.HIGH.value

.LOW.value

compares two adjacent
is>= the right term.

compares two adjacent
is> the right term.

EDAS 4.3 - 4

terms.

terms.

The

The

Addendum for EDAS release 4.3

Logical LESS-THAN-OR-EQUAL-TO (.LE.)

This is a binary operator that compares two adjacent terms. The
resultant value is TRUE if the left term is<= the right term.

FFFF
FFFF

Tl. EQU
T2 EQU

Logical LESS-THAN (.LT.)

1. LE. 2
2.LE.2

This is a binary operator that compares two adjacent terms. The
resultant value is TRUE if the left term is< the right term.

FFFF
0000

Tl
T2

EQU
EQU

Logical SHIFT LEFT (.SHL.)

1.LT.2
2.LT.2

This is a binary operator that shifts the left term a number of bits
left according to the right term. It is the same as 11 valuel<value2 11

•

2340 Tl EQU 1234H.SHL.4

Logical SHIFT RIGHT (.SHR.)

This is a binary operator that shifts the left term a number of bits
right according to the right term. It is the same as 11 valuel<-value2 11

•

0123 Tl EQU 1234H.SHR.4

Obtain HIGH-ORDER byte (.HIGH.)

This is a unary operator that provides a low-order result which is equal
to the high order value. It is the same as 11 value.SHR.8 11

•

0012 Tl EQU . HIGH.1234H

Obtain LOW-ORDER byte (.LOW.)

This is a unary operator that provides a low-order result which is equal
to the low order value. It is the same as 11 value.AND.OFFH 11

•

0034 Tl EQU . LOW.1234H

EDAS 4.3 - 5

Addendum for EDAS release 4.3

PSEUDO-OPS

Support of the following new pseudo-OPs has been added in release 4.3:

Constant Declarations

I
DATE

DSYM

Assembles system date as 8-character string, MM/DD/VY. I

Assembles "label" as an n-character string. {Similar
to the construct, DB 1 &#label 1

, in a macro.

I
I
I
I

DX

TIME

Assembles "expression II as a 4-hexadecimal digit string. I
I

Assembles system time as 8-character string, HH:MM:SS. I
------------------'

Origins and Values

ENTRY Uses the result of "expression" as the transfer
address. This value overrides any expression on the
final 11 END 11 statement.

Con d i t ion al s

!Fl Logically TRUE if the assembler is on the first pass.

IF2 Logically TRUE if the assembler is on the secona pass.

IF3 Logically TRUE if the assembler is on the third pass.

Mi see 11 aneous

EXITM Can be used to prematurely exit from a MACRO expansion.
This is normally used within a conditional. [**]

IRP The statements within IRP-ENDM are repeated for as
many items are in the argument list with 11 dummy 11 being
replaced by each argument in turn. [**]

IRPC The statements within IRPC-ENDM are repeated for each
character in the character-list while the "identifier"
is replaced, in turn, from the identifier list.[**]

EDAS 4.3 - 6

Addendum for EDAS release 4.3

OPTION This permits the altering of any of the permissable
assembler switches from within the source code.

REF Forces a reference to the symbols identified in the
argument 1 i st.

REPT The statements within REPT-ENDM are repeated according
to the result of "expression". [**]

[**] Details are in the chapter on MACRO PROCESSING SUPPORT

PSEUDO-OP DATE

The DATE pseudo-OP is used to assemble the system date as an 8-character
string, MM/OO/YY. This actual date is established when you power up your
computer and respond to the DOS's date entry query or by using the DOS's DATE
library command. The date string can be useful to place an ASCII date stamp
in your object program for the purpose of identification as to when it was
assembled. See example 1 for an illustration of DATE.

PSEUDO-OP DSYM

DSYM is usually used within a macro to assemble the "symbol" argument as
if it were a DB character string. It's syntax is:

label DSYM symbol

where "label" is an optional statement label, and "symbol" is some defined
symbolic label. When used in a macro environment, "symbol" will have the 11#11

indicator prefixed to designate the symbol as a macro dummy argument name. An
alternative method is to use the ampersand escape function within a standard
quoted character string such as 11 D8 1 &#symbol 111 which also assembles to the
same thing in a macro. See example 1 for an illustration of DSYM.

PSEUDO-OP DX expression

DX assembles "expression" as a 4-hexadecimal digit character string. Its
syntax is:

label DX expression

where "label II is an optional statement label. The expression can be a simple
symbol or a complicated collection of terms. The expression is evaluated to a
16-bit value and output as four hexadecimal digits. See example 1 for an
illustration of DX.

EDAS 4.3 - 7

Addendum for EDAS release 4.3

PSEUDO-OP TIME

The TIME pseudo is used to assemble the system time as an 8-character
string, HH:MM:SS. This actual time is established when you power up your
computer and respond to the 00S's time entry query or by using the DOS's TIME
library command. The TIME string can be useful to place an ASCII TIME stamp
in your object program for the purpose of identification as to when it was
assembled. See example 1 for an illustration of TIME.

PSEUDO-OP ENTRY

The ENTRY pseudo-OP is used to establish the object program's entry
point when invoked as a CMD program. Its syntax is:

ENTRY expression

It uses the result of "expression II as the transfer address. The use of ENTRY
will override any expression argument on the END statement.

Example 1

3000 00001 ORG 3000H
3000 00002 NAME MACRO #SYM
3000 00003 DSYM #SYM
3000 00004 DX #SYM
3000 00005 ENDM
3000 00006 ENTRY BEGIN
3000 210730 00007 BEGIN LO HL,MSG$
3003 3EOA 00008 LO A, 10
3005 EF 00009 RST 40
3006 C9 00010 RET
3007 00011 MSG$ NAME BEGIN
3007+42 00012 DSYM BEGIN

45 47 49 4E
300C+33 00013 DX BEGIN

30 30 30
3010 OD 00014 DB 13
3011 31 00015 DATE

32 2F 33 31 2F 38 34
3019 30 00016 TIME

39 3A 31 31 3A 33 36
0000 00017 END

PSEUDO-OP LORG

An enhancement has been made to LORG. If you want to switch off the
offsetting operation of LORG, add the statement

LORG $

to follow the last statement of the offset block of code. The assembler will

EDAS 4.3 - 8

Addendum for EDAS release 4.3

specifically test for the case, LORG $, so that it forces a new load block
where one is required.

PSEUDO-OPs IFx

The IFl, IF2, and IF3 conditional pseudo-OPs evaluate TRUE when the
assembler is on pass 1, 2, and 3 respectively. Pass 1 is the first pass used
to evaluate the value of all symbols (for forward references). Pass 2
generates the listing and cross-reference data file. Pass 2 will be omitted
if -NL is TRUE and -XR is FALSE. Pass 3 generates the object code. Macros
must be read in on each pass. EQUates must be read in on each pass if they
are the object of an IFDEF pseudo-OP, otherwise, they can be read in on the
first pass only. In the latter case, surround the *GET which gets the equate
file with an IFl-ENDIF conditional.

PSEUDO-OP OPTION

This pseudo-OP is used to alter the state of any of the assembler
switches entered on the command line invoking the assembly (either via MAS or
the 11A11 command of EDAS). Its syntax is:

OPTION switch,switch,switch, ..•

where "switch" is any of the permissable assembler switches. Prefix each
switch with 11

-
11 to turn OFF, or 11+11 to turn ON i.e. +NL suppresses the

listing (sets the NO LISTING switch to TRUE). If 11+11 is omitted, it is
assumed. The COMMA separator is mandatory if you omit the 11+11

• OPTION
switches over-ride command line switches.

PSEUDO-OP REF

REF may be used to force a reference to the symbols identified in the
argument list. Its syntax is:

REF symboll,symbol2, ... ,symboln

This function may be useful to force references to macros so that they may be
loaded via a '*SEARCH' operation.

PSEUDO-OP PAGE

PAGE no longer supports the operand,
automatically suppressed from the listing.

PSEUDO-OP SUBTTL

OFF. PAGE statements are

The SUBTTL string does not need to be enclosed in angle brackets; they
are now optional. SUBTTL also automatically invokes a PAGE.

EDAS 4.3 - 9

Addendum for EDAS release 4.3

ASSEMBLER DIRECTIVES

*INCLUDE filespec

Support for "*INCLUDE" has been added. In the EDAS macro assembler,
"*INCLUDE" operates exactly like 11*GET 11

• It is totally equivalent in
operation.

When used with the MAS macro assembler, "*INCLUDE" is used to 11 get 11 the
file identified on the MAS command line with the 11+ I =fil espec II redirection
specification. With MAS, this is useful to effect the inclusion of a
specified file in the input stream based on your command line option. Note
that for use with MAS, there should be only one "*INCLUDE" within your input
file stream.

The "*MOD" directive no longer supports an expression argument. To
compensate for this elimination, the local label substitution string has been
expanded to automatically generate up to a three-character string: A ••• Z,
AA .•• zz, AAA ••• zzz.

The "*PREFIX" directive is no longer supported. To compensate for this
elimination, the macro label substitution string has been expanded to
automatically generate up to a three-character string: A ••• Z, AA ••• ZZ,
AAA ••• zzz.

MACRO PROCESSING SUPPORT ADDED

The macro assembler now supports the standard INTEL macro operations of
REPT, IRPC, and IRP. These macro operations immediately expand the model
statements according to specifications in the macro prototype statement.

MACRO REPT

The statements within REPT-ENDM are repeated according to the result of
"expression". The syntax of this macro is:

label REPT <expression>
statements
ENDM

In the prototype statement, the angle brackets are not required. See the
following example which generates values from 1 through n where 11 n11 is
controlled by the value passed as 11 #COUNT 11 in the DOIT invocation.

5200 00001 ORG 5200H
5200 00002 DOIT MACRO #COUNT
5200 00003 T DEFL 0
5200 00004 REPT #COUNT
5200 00005 T DEFL T+l
5200 00006 DB T
5200 00007 ENDM

EDAS 4.3 - 10

Addendum for EDAS release 4.3

5200 00008 ENDM
5200 00009 DOIT 3
0000+ 00010 T DEFL 0

00011 REPT 3
5200+ 00012 T DEFL T+l
5200+ 00013 DB T
5200+ 00014 ENDM
0001+ 00015 T DEFL T+l
5200+01 00016 DB T
0002+ 00017 T DEFL T+l
5201+02 00018 DB T
0003+ 00019 T DEFL T+l
5202+03 00020 DB T
0000 00021 END

MACRO IRPC

The statements within IRPC-ENDM are repeated for each character in the
character list while the "identifier" is replaced with each character in turn
from the identifier list. The identifier can be a multi-character string
which is not a reserved word. This macro's syntax is:

label IRPC identifier,character-list
statements
ENDM

See the following example which generates values from 1 to 3.

5200 00001 0RG 5200H
00002 IRPC X,123

5200 00003 DB X
5200+ 00004 ENDM
5200+01 00005 DB 1
5201+02 00006 DB 2
5202+03 00007 DB 3
0000 00008 END

MACRO IRP

The statements within IRP-ENDM are repeated for as many items as are in
the argument list with 11 dummy 11 being replaced by each argument in turn. The
angle brackets surrounding the argument list are mandatory. Its syntax is:

label IRP <dummy>,<argl,arg2, ••• ,argn>
statements
ENDM

where label is an optional statement label. See the following example which
generates values from 1 to 3 and makes use of the EXITM escape.

5200 00002 0RG 5200H

EDAS 4.3 - 11

Addendum for EDAS release 4.3

5200
5200
5200
5200
5200+
5200+01

5201+02

5202+03

0000

00003 LABEL
00004 LABXX
00005
00006
00007
00008
00009 LABl
00010
00011
00012
00013 LAB2
00014
00015
00016
00017 LAB3
00018
00019
00020
00021

EXITM PSEUDO-OP

IRP
DB
IFGT
EXITM
END IF
ENDM
DB
IFGT
EXITM
END IF
DB
IFGT
EXITM
END IF
DB
IFGT
EXITM
END IF
END

XX,<1,2,3,4,5>
xx
$-LABEL,3

1
$-LABEL,3

2
$-LABEL,3

3
$-LABEL,3

This pseudo-OP can be used to prematurely exit from a MACRO expansion.
This is normally used within a conditional block. One level of conditional
nesting will be removed (if any are present). See the previous example.

ADDITIONAL MACRO FEATURES

MACRO parameters are now acceptable within a quoted string if prefixed
by an ampersand. i.e. TEST DB '&#NAME'. See the following example.

5200 00001 ORG 5200H
5200 00002 FEED MACRO #STRING
5200 00003 $?1 JR , $?2
5200 00004 LABEL? IRPC XX,#STRING
5200 00005 LABXX DB '&XX'
5200 00006 IFGT $-LABEL?,3
5200 00007 EXITM
5200 00008 END IF
5200 00009 ENDM
5200 00010 $?2 LD HL, LABEL?
5200 00011 ENDM
5200 00012 FEED 012345
5200+1806 00013 $Al JR $A2

00014 LABELA IRPC XX,012345
5202+ 00015 LABXX DB '&XX'
5202+ 00016 IFGT $-LABELA,3
5202+ 00017 EXITM
5202+ 00018 END IF
5202+ 00019 ENDM
5202+30 00020 LABO DB '0'

EDAS 4.3 - 12

Addendum for EDAS release 4.3

5203+31

5204+32

5205+33

5206+210252
0000

00021
00022
00023
00024 LABl
00025
00026
00027
00028 LAB2
00029
00030
00031
00032 LAB3
00033
00034
00035
00036 $A2
00037

IFGT $-LABELA,3
EXITM
END IF
DB I 11
IFGT $-LABELA,3
EXITM
END IF
DB I 2 I
IFGT $-LABELA,3
EXITM
ENDIF
DB 131
IFGT $-LABELA,3
EXITM
ENDIF
LO HL, LABELA
END

Comments are now carried through a macro to the listing. Suppress
un-needed comments by using a double semi-colon in lieu of a single one.

Macro definitions may be nested. The inner macro will not be defined
until the outer macro is expanded.

Macro expansions in the listing will be so noted by the a~pendage of a
plus sign IMMEDIATELY PRECEDING THE OBJECT CODE display.

MED and EDAS COMMANDS

Assembly Listing changes:

All line numbers are output in a sequential order incremented by one for
each line of logical output. Lines suppressed from display use up one line
number for each line omitted [i.e. from *LIST OFF to *LIST ON; -NC
statements; -NM statements].

The use of the 11 -NC II switch now suppresses a 11 condition a 1 b 1 ocks from
the listing including all conditional pseudo-OPs except those statements in a
macro definition.

Error Totals

A "No end statement" error is included in the ERROR TOTALS count. An
"Unclosed conditional" error is also included in the ERROR TOTALS count. If
the END statement is omitted, the ERROR TOTALS count figure will be correct.
Note that error totals is omitted if pass 2 and pass 3 are suppressed.

EDAS 4.3 - 13

Addendum for EDAS release 4.3

<Q>UERY COMMAND

The 11 Q11 command can now be used to invoke any other DOS command under
Model I and Model III operation provided the DOS command does not affect
HIGH$. Some minimum am9unt of buffer space must be available in order to
provide room for the 11 Q11 command's operationo This operation is now similar
to that documented for TRSDOS 6.x invocatione The syntax remains:

Q DOS-command

<1> ONE COMMAND

The 11111 command can now be used under TRSDOS 6.x to change the number of
printed lines· per page output by the assembler. If FORMS is active, its LINES
parameter must not be less than or equal to the value set by the 11 1 11 command.
The default will be 56 printed lines per page. Page breaks generate a form
feed character, X1 0C 1

• For printers that do not support this function, a form
feed filter is required. Use FORMS under TRSDOS 6.x. The standard Model I/III
ROM printer driver converts a form feed to an appropriate number of line
feeds.

MESSAGE TO JOB LOG"."

This assembler command has been eliminated.

EDAS 4.3 - 14

Introduction to EDAS Version IV

DISTRIBUTION DISKS

The Model I/III EDAS IV version and each of its utilities, are single
programs that work on both the Model I and III under LOOS. It is distributed
on a 35 track single density data diskette. The LOOS 6.x EDAS Version IV is
distributed on a 40 track double density data diskette. The Model II Version
is distributed on an 8 inch diskette.

It is strongly recommended that before using your new Editor Assembler,
you should make a BACKUP copy to use in a working environment and retain the
EDAS diskette as your MASTER copy. This "master" should be backed up to
produce a "working" copy and the "master" archived. The BACKUP utility
procedures are found in your DOS Owner's Manual in the section entitled
"UTILITY PROGRAMS". After creating a BACKUP copy of the EDAS diskette, store
the MASTER diskette in a safe place. Use only your "working" copy for
production.

THE EDAS FACILITY

The MISOSYS Editor Assembler is a RAM-resident text editor and RAM
resident or direct disk assembler for the Model I, II, and III microcomputer
systems, as well as computers running under LOOS 6.x. The Editor Assembler
was designed to provide the maximum in user interface and ease of use while
providing capabilities powerful enough for the expert Z-80 assembly language
programmer.

The text editing features of the Editor Assembler facilitate the
manipulation of alphanumeric text files for both assembler source and
compiler source languages. The most common use of the editing capability is
in the creation and maintenance of assembly language source programs to be
assembled by EDAS. Through full support of upper and lower case text entry,
the Editor can serve as a line-oriented text processing tool.

The assembler portion of the Editor Assembler facilitates the
translation of Z-80 symbolic language source code programs into machine
executable code. This object code may then be executed directly from the DOS
Ready prompt.

Although EDAS could be used as an entry-level assembler, the scope of
the documentation assumes a previous knowledge of assembler language and the
hexadecimal number system. This is not a "learning" manual - it details the
use of EDAS Version IV but in no way attempts to teach you how to program in
the Z-80 assembly language. You should have available a standard reference
handbook on the Z-80 code. Many texts are available.

The <A>ssemble command supports the assembler language specifications
set forth in the ZILOG 11 Z80-ASSEMBLY LANGUAGE PROGRAM MANUAL 11

, 3.0 D.S.,
REL.2.1, FEB 1977, with certain limitations.

EDAS INTRO
1 - 1

Introduction to EDAS Version IV

Nested MACROs are supported;
individually.

however, MACROs must be defined

Operand expressions may contain the 11+ 11
,

11
-

11
,

11* 11
,

11
/

11
,

11 .MOD. 11
,

11&11 or
11

• AND • 11
(l o g i c al AND) , 11 ! 11 or 11

• 0 R . 11
(l o g i c al OR) , 11

• XOR • " (l o g i c a l XOR) ,
.NOT. (logical ones complement), .NE. and .EQ. (logical comparison, and 11 <11

(shift) operators, and are evaluated on a strictly left to right basis.
Parentheses are not allowed!

Conditional assembly commands, where a programmer may control which
portions of the source code are assembled, are implemented with the
conditional pseudo-ops; IF, IFLT, IFEQ, IFGT, IFNE, IFLT$, IFEQ$, IFGT$,
IFNE$, IFDEF, IFNDEF, and IFREF.

Constants may be decimal (D), hexadecimal (H), octal (0) or (Q), binary
(8), or string (1 cc').

The Assembler commands supported are *LIST OFF, *LIST ON, *MODULE,
*PREFIX, *GET filespec, and *SEARCH library, as well as a range of listing
pseudo-ops (TITLE, SUBTTL, SPACE, PAGE, and constant declarations for bytes,
words, and strings).

A label can contain only alphanumeric characters and certain special
characters. A label can be up to 15 characters long. The first character must
be alphabetic (A-Z), the dollar sign ($) or the <AT> sign (@). Subsequent
characters must be alphanumeric (A-Z, 0-9) or selected special characters -
<AT> sign (@), underline (), question mark (?) or dollar sign ($). For
compatibility with MACR0-80,-a colon may be inserted immediately following
the symbol.

Two utilities are included with the EDAS application. XREF/CMD is used
to generate a full cross reference listing of symbol use. TTD/CMD is a tool
to convert EDTASM compatible source cassette files to EDAS source disk files.

NOTATION CONVENTIONS

Braces 11
{}

11

Braces enclose optional information. The braces are never input in
Editor Assembler commands (Note: braces are used in C language source code).

E 11 i pses 11
•••

11

The ellipses represents repetition of a previous item.

EDAS INTRO
1 - 2

Introduction to EDAS Version IV

Line number 11 line 11

11 line 11 represents a number arbitrarily assigned to a statement for the
purpose of identifying it to the editor functions. 11 Line 11 can be any decimal
number ranging from <l - 65529>.

Period 11
•

11

A period may be used in place of any line number. It represents a
pointer to the current line of source code being assembled, printed, or
edited. It is termed the "current line pointer" throughout this
documentation.

Top of Text 11 #11 or 11 t 11

The pound sign character, 11# 11
, or the letter 11 t 11

, may be used in place of
any line number during a line number reference. It represents the beginning
or top of the text buffer.

Bottom of Text 11* 11 or 11 b11

The asterisk character, 11* 11
, or the letter 11 b11

, may be used in place of
any line number during a line number reference. It represents the bottom of
the text buffer.

Line Increment 11 inc 11

This is a number representing an increment between successive line
numbers.

LOWER CASE ENTRY

Lower case is supported freely throughout EDAS for text and command
entry. All Editor Assembler commands may be entered in lower case as well as
upper case to facilitate its use as a general purpose text editor.

Assembler source code can be entered in upper case or lower case. For
lower case entry, the Editor must be in the case converted mode (see the
<S>witch case command). This mode automatically converts lower case entry to
upper case except for text which is between single quotes (enabling lower
case string constants) and for all text following a semicolon (permitting
lower case comments).

EDAS INTRO
1 - 3

Running EDAS Version IV

EXECUTING EDAS

EDAS is a directly executable command file. It is accessed in response
to the DOS command prompt simply by entering:

EDAS (MEM=va 1, JCL, ABORT, LC, EXT=" ext 11 ,P n=va 1)
EDAS *

MEM=val is used to protect a high memory region just
like you can in BASIC.

JCL is used when running from Job Control Language
so that EDAS uses the @KEYIN routine for its
keyboard input.

ABORT if specified, EDAS will automatically abort
after an assembly with errors. It will return
to DOS Ready.

LC is used when editing LC source files. It will
set tabs to 4, default extension to 11 CCC 11

, and
invoke II lower case permitted 11

•

EXT= 11 ext 11 provides a means by which the default source
file extension can be altered to 11 ext 11

•

Pn=val can be used to pass symbol equates to the
assembler from the command line. 11 n11 can range
from <1-4> permitting four symbol equates.

* if specified, will reload EDAS and maintain
the text buffer pointers.

Note: 11 val 11 can be entered as parm=ddd or parm=X'hhhh'.

There are no parameter abbreviations.

The parameters shown in parentheses are entirely optional. They are used
to alter the behavior of EDAS. Parameters enhance the utility of the Editor
Assembler by giving it greater flexibility. These options are used as
follows:

MEM=val

This parameter is used to protect a high region of memory from use by
EDAS. The region would usually be reserved for an in-memory assembly.

RUNNING EDAS
2 - 1

Running EDAS Version IV

If you do not enter a value, EDAS will recover the value stored at HIGH$
(address X1 4049 1 and X1 404A 1 for the Model I or X1 4411 1 and X1 4412 1 for the
Model III) or use the value returned by the DOS (for the Model II or LOOS
6.x) and use it for top of memory, maintaining its MEMTOP pointer to that
value. If you do not wish to protect any memory from use by the Editor
Assembler, do not use this parameter.

You may protect a memory region similar to that which can be protected
from BASIC by entering a non-zero value. Enter an address value in decimal or
hexadecimal which is one byte less than the lowest address you want to
protect. Your entry must be greater than the start of the text buffer. At no
time will the Editor Assembler use memory higher than the entered value. This
function is useful if you have placed a high memory driver or utility program
that does not maintain HIGH$ and you want to avoid clobbering it. For
example:

EDAS (MEM=X'DFFF')

will restrict EDAS from using any address above X1 DFFF 1
• Your in-memory

program can be assembled starting at address X1 E000 1
•

JCL (LOOS use only)

EDAS uses an internal line input routine to enable the parsing of
certain characters. This hinders the ability of commanding EDAS from within
the Job Control Language (JCL) of LDOS. If you want to control the assembly
process from JCL, use the JCL parameter in the EDAS command line. If you are
going to <I>nsert text while in a JCL mode, then you must use the 11%01 11 to
simulate a <BREAK> in the JCL file. Don't forget, the 11 %01 11 can only be used
if you are going to compile the JCL. For example, the following enters EDAS
and inserts one line:

ABORT

ed as (jc l)
i
Thi s i s a te s t
%01
//stop

This parameter will cause EDAS to abort and return to DOS upon an
assembly or disk error, or one of the following errors: no text in buffer,
line number too large, bad parameters, buffer full, no such line, *GET or
*SEARCH error, *SEARCH file not a PDS, PDS member error •. It is useful when
running from a Job Control Language to inhibit erroneous jobs from
continuing.

RUNNING EDAS
2 - 2

Running EDAS Version IV

LC

This parameter is used when you are editing LC source files \C
language). It will do three things for you. LC changes the source file
default extension from 11 ASM 11 to "CCC" - 11 CCC 11 is used in the LC compiler. It
will change the tab stops from every eight columns to every four columns -
more reasonable for LC source code. The LC parameter will also invoke the
< S>wi tc h case command to II lower case permitted II as LC source code i ~; entered
primarily in lower case.

EXT= 11 ext 11

This parameter is available for those using the EDAS editor to edit and
maintain files other than EDAS assembler source files. For instance, the M-80
assembler uses 11 MAC 11 as the standard extension. FORTRAN uses "FOR". You may
be using EDAS to create or edit JCL files. Use this parameter to change the
default source file extension (that used with the <L>oad and <W>rite
commands) to one of your choice. You must enter a full three characters if
you use this parameter. For example:

EDAS (EXT= 11 MAC II)

specifies that "MAC" be used as the default extension (make sure the supplied
extension is entered in UPPER CASE).

Note that the override of "CCC" if the LC parameter is used takes
precedence. If LC is specified, the EXT= parameter is ignored.

P n=va l

This parameter provides the power of entering symbol table equates
directly from the EDAS command line. 11 Pn 11 is actually four parameters as 11 n11

can range from <1-4>. Thus, you specify the parameter as either Pl, P2, P3,
or P4. These parameters are EDAS entry symbol table additions. By passing
parameter values with these on the EDAS command line, you can alter four
symbol table entries. Thus, you can use these to control EQUate options, pass
values to symbols, etc. The format usable is:

Pn sets @@n to TRUE.

Pn=ddd sets @@n to decimal value ddd.

Pn=X 1 hhhh 1 sets @@n to hexadecimal value hhhh.

RUNNING EDAS
2 - 3

Running EDAS Version IV

The actual labels added to the symbol table as DEFLs are 11 @@n 11
, where

11 n 11 is the same as the 11 n11 of "Pn". This is depicted as follows:

Pl == @@l P2 == @@2 P3 == @@3 P4 == @@4

The four symbols initially have a value of zero (logical FALSE). You can
use these to externally set flags for use in conditional assembly (or
whatever else your heart desires). For example, say you have a program that
uses two conditional symbols, MODl and MOD3. If your program has the
statements:

MODl EQU @@l
MOD3 EQU @@3

then an EDAS command 1 i ne of EDAS (Pl) wi 11 set 11 @@1" to TRUE, 11@@3 11 was
defaulted to FALSE, and thus "MODI" would be TRUE and "MOD3" would be FALSE
since the two conditional symbols you are using are equated to the 11 @@n 11

parameters.

You will find this parameter support a great feature when running EDAS
from JCL.

EDAS *

The 11 EDAS * 11 is used to re-enter EDAS keeping the source program and
variables intact. This permits you to recover after a re-boot providing the
Editor Assembler region is not disturbed or in case you inadvertantly entered
the ranch command without saving your source file. The region occupied by
the Editor Assembler is not normally disturbed by a RESET and boot of DOS.
Remember to hold the <ENTER> key depressed during the RESET operation if your
SYSTEM diskette contains an AUTO function.

EDAS COMMAND MODE

Once 11 EDAS 11 is entered, the following message will appear on the video
display screen:

MISOSYS EDAS-n.n

The 11 n.n 11 is indicative of the current version number. This display is
followed by a right caret 11 >11 prompt. The prompting character is displayed
whenever EDAS is ready to accept a command. Detailed information on all
commands supported can be found in the chapter entitled, COMMANDS.

RUNNING EDAS
2 - 4

Assembly Language Information

SYNTAX
======

The basic format of an assembly language statement consists of up to
four fields of information. These fields, in order, are:

{LABEL} {OPCODE} {OPERAND{S}} { ;COMMENT}

LABEL

OPCODE

OPERANDS

;COMMENT

is a symbolic name assigned the address value
of the first byte of the object instruction.

is the mnemonic of a specific Z-80 assembler
instruction or pseudo-OPeration code.

are arguments of the OPCODE.

is an informative notation that is ignored by
the assembler but aids in documenting the
source code.

Note: Fields are separated by a tab or spaces.
===--===--===-=========

As can be noted from the format box, none of the fields are required;
however, each line should contain at least one field. This may seem unusual
at first, but it is readily explained. If you want the comment field to
occupy the entire line, start the line with a semi-colon in the first
character position of the line - then, no other field is needed. A symbolic
label can exist by itself on a line. There are some Z-80 operation codes that
have no arguments; thus, an OPCODE could exist by itself on a line (in field
2). You will never have an argument by itself as an argument relates to an
OPCODE.

The statement line is considered to be freely formatted. That means that
there are no columnar restrictions. Fields are separated by one or more tabs
or spaces. If a tab is used, it makes for neater listings. Tabs are also
retained as tabs and thus will keep source files smaller than using multiple
spaces.

Symbol i c L ab el s

A label is a symbolic name of a line of code. Labels are always
optional. A label is a string of characters no greater than 15 characters.
The first character must be a letter (A-Z) or one of the special characters,
11 $ 11 and 11 @11

• The 11@11 as the first character of a label is useful for
highlighting certain labels since labels begining with 11 @11 appear at the
beginning of an ascendingly sorted list (such as the symbol table listing or
cross-reference listing). The dollar sign is supported for easier adaptation
of M-80 source files. Actually, the 11 $ 11 sorts out higher than 11 @11

; however,

INFO - SYNTAX
3 - 1

Assembly Language Information

it is recommended that you reserve use of 11 $ 11 as the first character of
11 local 11 labels. This can be very useful in light of the 11 -SL 11 assemble switch

A label may contain, within character positions 2-15, letters (A-Z),
decimal digits (0-9), or certain special characters: the <AT> sign, 11@11

; the
underline, 11 11

; the question mark, 11 ? 11
; or the dollar sign, 11 $ 11

• The dollar
sign "$ 11

, appearing by itself, is reserved for the value of the reference
counter of the current instruction. It cannot be used as a single character
symbol.

A symbol appearing by itself in the LABEL field of a line, will be
interpreted as being equated to the current value of the program counter.
Thus, the following two LABEL examples are completely equivalent:

ALLALONE
ALLALONE EQU $

Certain labels are reserved by the assembler for use in referring to
registers. Others are reserved for branching conditions (condition codes) and
may not be used for labels. (these conditions apply to status flags). The
following labels are reserved and may not be used for other purposes:

Reserved Labels

A, B, C, D, E, H, L, I, R,
IX, IY, SP, AF, BC, DE, HL
C, NC, Z, NZ, M, P, PE, PO

AND, EQ, MOD, NE, NOT, OFF, ON, OR, XOR

Examples of labels:

ENTRY @OPEN
SELECT CODE $$CORE

Opcodes

BUFFER$
@

BYTE POINTER WHAT?
CARRIAGE RETURN @EXIT

The OPCODES for the EDAS Version IV Assembler correspond to those in the
Z-80-ASSEMBLY LANGUAGE PROGRAMMING MANUAL, 3.0 D.S., REL 2.1, FEB 1977.

Operands

Operands are always one or two values separated by commas. Some
instructions may have no operands at all.

INFO - SYNTAX
3 - 2

Assembly Language Information

A value in parentheses 11
()

11 specifies indirect addressing when used with
registers, or "contents of" otherwise.

Constants are data declarations of fixed value. They are constructed as
a sequence of one or more digits and an optional radix specification
character. The digits must be valid for the radix used. The following table
denotes aceptable constant composition:

Data Type Radix Char Digits Examples
----------- --------- -------- --------------------
hexadecimal H <0-9,A-F> lAH, 0ABH, 0FFH

decimal D <0-9> 1070, 107, 15384

octal 0 or Q <0-7> 166Q, 1660

binary B <0-1> 01101110B

Note: Decimal is assumed if the radix character is omitted

A constant not followed by one of the radix characters is assumed to be
decimal. A constant must begin with a decimal digit. Thus 11 FFH 11 is not
permitted, while 11 0FFH 11 is valid.

Operands may also be constructed as complicated expressions using the
mathematical and logical operators. Due to the extent of the documentation,
they are described in the section on 11 Expressions 11

•

Comments

All comments must begin with a semicolon 11
;

11
• If a source statement line

starts with a semicolon in the first character position of the line, the
entire line is a comment. If EDAS is in the lower case converted mode,
comments will be retained in whatever case they are entered. It is suggested
that comments be entered in lower case with punctuation as required. It will
make your source code listings much easier to read. All entry of text
following a semi-colon is maintained in its entered case.

INFO - SYNTAX
3 - 3

Assembly Language Information

EXPRESSIONS

A value of an operand may be an expression consisting of multiple terms
(labels and data constants) connected with mathematical operators. These
expressions are evaluated in strictly LEFT to RIGHT order. No parentheses are
allowed. EDAS does not support operator precedence. Most operators are
binary, which means that they require two arguments. Both 11 +11 and 11

-
11 have

unary uses also. The following operators are supported:

OPERATOR

+

*
I

.MOD.

<

FUNCTION EXAMPLE

Addition ALPHA+ BETA

Subtraction

Multiplication

Division

Modulo Division

Shift Left or Right

ALPHA - BETA

ALPHA* BETA

ALPHA/ BETA

.AND. or & Logical Bitwise AND

ALPHA .MOD. BETA

ALPHA< -BETA

ALPHA .AND. BETA

. OR. or

.XOR.

.NOT.

.NE.

.EQ.

%

Logical Bitwise OR ALPHA .OR. BETA

Logical Exclusive OR ALPHA .XOR. BETA

Logical l's Complement FALSE EQU .NOT. TRUE

Logical Binary Not Equal ALPHA .NE. BETA

Logical Binary Equal ALPHA .EQ. BETA

Length of MACRO %#LABEL or%%

%& MACRO label concatenation #NAME%&L

Addition (+)

The addition operator will add two constants and/or symbolic values.
When used as a unary operator, it simply echoes the value.

INFO - EXPRESSIONS
3 - 4

Assembly Language Information

Examples:

0(iHE CON30 EQU 30

0010 CON16 EQU +10H

0003 CON3 EQU 3

002E A2 EQU CON30+CON16

Subtraction (-)

The minus operator will subtract two constants and/or symbolic values.
Unary minus produces a 21 s complement.

Ex amp 1 es:

000E

FFF2

A2

A4

Multiplication (*)

EQU CON30-CON16

EQU -A2

The multiplication operator will perform an integer multiplication of a
16-bit multiplicand by an 16-bit multiplier. Overflow of the resulting 16-bit
value is not flagged as an error.

Ex amp 1 es:

01 EflJ

BF20

Division (/)

A5

A6

EQU

EQU

CON30*CON16

60000*3 ;this overflows

The division operator will perform an integer division of a 16-bit
dividend by an 8-bit divisor.

Examples:

0002

184D

A7

A8

EQU

EQU

5/2

48928/7

INFO - EXPRESSIONS
3 - 5

Assembly Language Information

Mod u l o (. MOD .)

The modulo operator calculates the remainder of the above integer
division.

Examples:

0001

0005

Shift (<)

A9

A10

EQU

EQU

5.MOD.2

48928.MO0.7

This operator can be used to shift a value left or right. The form is:

VALUE < {-}AMOUNT

If AMOUNT is positive, VALUE is shifted left. If AMOUNT is negative,
VALUE is shifted right. The magnitude of the shift is determined from the
numeric value of AMOUNT. A good use of the SHIFT operator is to determine the
high order byte value of a 16-bit value.

Examples:
...., ________

0057 HIORD EQU 5739H<-8

C000 Al EQU 3C00H<4

03Cfl) A2 EQU 3C00H<-4

BBFF A3 EQU 3CBBH<8+255

03Cfl) A3 EQU 15+3Cfl)0H<-4

The next higher page address in a program is easily calculated with:

CORE DEFL
ORG

$<-8+1<8
CORE

Logical AND (.AND. or&)

The logical AND operator bitwise ANDS two constants and/or symbolic
values. Each bit position of the 16-bit resultant value is a 11 111 only if both

INFO - EXPRESSIONS
3 - 6

Assembly Language Information

a r g u men ts have a 111 11 i n the correspond i n g po s i ti on , or a 110 11 i f either
argument has a 110 11

•

Examples:

3C00 Al EQU 3C00H&0FFH

0000 A2 EQU 0&15

0000 A3 EQU 0AAAAH.AND.5555H

L ogi cal OR (.OR. or !)

The logical OR operator bitwise 11 ORS 11 two constants

values. Each bit position of the 16-bit resultant value is
argument has a 11 1 11 in the corresponding position, or a
argument has a 111 11

•

Examples:

3CFF

0GJ0F

FFFF

Al

A2

A3

Logical XOR (.XORe)

EQU

EQU

EQU

3C00H!GJFFH

(LOR .15

0AAAAH.OR.5555H

and/or symbolic
a 111 11 if either

110 11 if neither

The logical XOR operator performs a bitwise exclusive OR on two
constants and/or symbolic values. Each bit position of the 16-bit resultant
value is a 11111 only if both arguments have reversed bi ts in the corresponding
position (i.e. one must have a 11 111 while the other must have a 110 11

). The XOR
operation is considered a modulo two addition.

Examples:

3CF8

0(107

FFFF

Al

A2

A3

Logical NOT (.NOT.)

EQU

EQU

EQU

3C07H.XOR.0FFH

8.XOR.15

0AAAAH.XOR.5555H

This is a unary operator. It performs a one's complement on the term it
precedes. Observe the following examples:

INFO - EXPRESSIONS
3 - 7

FFFE
FFFF
0000

Tl
T2
T3

Logical NOT-EQUAL (.NE.)

Assembly Language Information

EQU
EQU
EQU

. NOT. l

. NOT. 0

. NOT.-1

This operator is a binary operator that compares two adjacent terms. The
resultant value is TRUE if the terms are not equal. A FALSE result is
returned if the two terms are equal. Observe the following examples:

0000 Tl EQU 1000.NE.1000
FFFF T2 EQU 1000.NE.10
FFFF T3 EQU L NE. -1
0000 T4 EQU .NOT.0.NE.-1

Logic a 1 EQUAL (.EQ.)

This operator is a binary operator that compares two adjacent terms. The
resultant value is TRUE if the terms are equal. A FALSE result is returned if
the two terms are not equal. Observe the following examples:

FFFF
0000
0000
FFFF

Tl
T2
T3
T4

EQU
EQU
EQU
EQU

Macro Length Operator(%)

100{tL EQ.1000
1000.EQ.10
L EQ. -1
.NOT.0.EQ. -1

The length operator is applicable only with MACRO usage. Therefore, its
use will be discussed in the chapter on MACRO PROCESSING.

INFO - EXPRESSIONS
3 - 8

Assembly Language Information

Z-80 STATUS INDICATORS (FLAGS)

The flag registers (F and F1
) supply information to the user regarding

the status of the Z-80 at any given time. The bit positions for each flag are
as fo 11 OWS:

7 6 5 4 3 2 1 0
s z X H X P/V N C

C is the Carry flag. z is the Zero flag.

N is the Add/Subtract flag. s is the Sign flag.

P/V is the Parity/Overflow flag. X is not used.

H is the Half-carry flag.

Each of the two Z-80 flag registers contain six (6) bits of status
information which are set or reset by CPU operations. Four of these bits are
test ab l e (C , P / V , Z , and S) for u s e with con d i ti on a 1 ju mp , ca 11 , or re tu rn
instructions. Two flags (H, N) are not directly testable and are used by the
Z-80 internally to handle Binary Coded Decimal (BCD) arithmetic. Two flag
register bits (3, 5) are not used by the Z-80.

In the Z-80 mnemonic instruction set, the 11 CALL 11
,

11 JP 11
, and 11 JR 11

instructions can contain a "condition code" which is part of the argument of
the OPCODE. The branching determination is performed according to the result
of the flag register testable bits. The mnemonics for these condition codes
are as follows:

-===-

FLAG

Carry

Zero

Sign

Parity

CONDITION SET CONDITION NOT SET
------------- -----------------

C NC

z NZ

M (minus) p (plus)

PE (even) PO (odd)

INFO - FLAGS
3 - 9

Assembly Language Information

Carry Flag (C)

The carry flag is set or reset depending on the operation being
performed. For 11 ADD 11 instructions that generate a carry and 11 SUBTRACT"
instructions that generate a borrow, the carry flag will be set. The carry
flag is reset by an 11 ADD 11 that does not generate a carry and a "SUBTRACT"
that generates no borrowo This saved carry facilitates software routines for
extended precision arithmetic. Also, the 11 DAA 11 instruction wi 11 set the carry
flag if the conditions for making the decimal adjustment are met.

For instructions RLA, RRA, RLS, and RRS, the carry bit is used as a link
between the least significant bit (LSB) and most significant bit (MSB) for
any register or memory location. During instructions RLCA, RLC sand SLA s,
the carry contains the last value shifted out of Bit 7 of any register or
memory location. During instructions RRCA, RRC s, SRA s, and SRL s, the carry
contains the last value shifted out of Bit 0 of any register or memory
location.

For the logical instructions AND s, OR s, and XOR s, the carry flag will
be reset. The carry flag can also be set (SCF) or complemented (CCF).

Add/Subtract Flag (N)

This flag is used by the decimal adjust accumulator instruction (DAA) to
distinguish between 11 ADD 11 and "SUBTRACT" instructions. For all 11 ADD 11

instructions, 11 N11 will be set to a 11 zero 11
• For all "SUBTRACT" instuctions,

11 W1 will be set to a "one".

Parity/Overflow Flag (P/0)

This flag is set to a particular state depending on the operation being
performed. For arithmetic operations, this flag indicates an overflow
condition when the Accumulator result is greater than the maximum possible
number (+127) or is less than the minimum possible number (-128). The
overflow condition is determined by examining the sign bits of the operands.

For addition, operands with different signs will never cause overflow.
When adding operands with like signs and the result has a different sign, the
overflow flag is set. For example:

+120
+105

= 0111 1000
= !21110 1001

+225 = 1110 0001

ADDEND
AUGEND

(-95) SUM

INFO - FLAGS
3 - 10

Assembly Language Information

The two numbers added together have resulted in a number that exceeds +127
and the two positive operands have resulted in a negative number (-95) which
is incorrect. The overflow flag is therefore set.

For subtraction, overflow can occur for operands of unlike signs.
Operands of like sign will never cause overflow. For example:

+127 = 0111 1111
(-)-64 = 1100 0000

+191 = 1011 1111

MINUEND
SUBTRAHEND

DIFFERENCE

The minuend sign has changed from a positive to a negative giving an
incorrect difference. The overflow flag is therefore set. Another method for
predicting an overflow is to observe the carry into and out of the sign bit.
If there is a carry in and no carry out, or if there is no carry in and a
carry out, then overflow has occurred.

This flag is used with logical operations and rotate instructions to
indicate the parity of the result. The number of "one" bits in a byte are
counted. If the total is odd, "ODD" parity (P=0) is flagged. If the total is
even, "EVEN" parity is flagged (P=l). When inputting a byte from an I/0
device "IN r,(C)", the flag will indicate the parity of the data.

During search instructions (CPI, CPIR, CPD, and CPDR) and block transfer
instructions (LOI, LDIR, LDD, and LDDR), the P/V flag monitors the state of
the byte count register (BC), When decrementing the byte counter results in a
zero value, the flag is reset to zero, otherwise the flag is a one.

During "LO A,I" and 11 LD A,R 11 instructions, the P/V flag will be set with
the contents of the interrupt enable flip-flop (IFF2) for storage or testing.

The Half Carry Flag (H)

The half carry flag (H) will be set or reset depending on the carry and
borrow status between bits 3 and 4 of an 8-bit arithmetic operation. This
flag is used by the decimal adjust accumulator instruction (DAA) to correct
the result of a packed BCD add or subtract operation. The 11 H11 flag will be
set (1) or reset (0) according to the following table:

H ADD

1 There is
Bit 3 to

0 There is
from Bit

a carry from
Bit 4

no carry
3 to Bit 4

INFO - FLAGS
3 - 11

SUBTRACT

There is no borrow
from Bit 4

There is a borrow
from Bit 4

Assembly Language Information

The Zero Flag (Z)

The Zero flag (Z) is set or reset if the result generated by the
execution of a certain instruction is a zero. For 8-bit arithmetic and
logical operations, the 11 Z11 flag will be set to a 11 one 11 if the resulting byte
in the Accumulator is zero.

For compare (search) instructions, the 11 Z11 flag wi 11 be set to a "one"
if a comparison is found between the value in the Accumulator and the memory
location pointed to by the contents of the register pair HL.

When testing a bit in a register or memory location, the 11 Z11 flag will
contain the state of the indicated bit.

When inputing or outputing a byte between a memory location and an I/0
device (INI, IND, OUTI, or OUTD), if the result of register B minus one (1)
is zero, the Z flag is set, otherwise it is reset. Also for byte inputs from
I/0 devices using "IN r, (C)", the Z flag is set to indicate a zero byte
input.

The Sign Flag (S)

The Sign flag (S) stores the state of the most significant bit of the
accumulator (Bit 7). When the Z-80 performs arithmetic operations on signed
numbers, binary two's complement notation is used to represent and process
numeric information. A positive number is identified by a 11 zero 11 in bit 7. A
negative number is identified by a 11 one 11

• The binary equivalent of the
magnitude of a positive number is stored in bits 0 to 6 for a total range of
from 0 to 127. A negative number is represented by the two's complement of
the equivalent positive number. The total range for negative numbers is from
-1 to -128.

When inputing a byte from an I/0 device to a register, "IN r,(C) 11
, the

11 S11 flag will indicate either positive (S=0) or negative (S=l) data.

INFO - FLAGS
3 - 12

Assembly Language Pseudo-OP Codes

PSEUDO-OPS

There are many pseudo-OPs which EDAS will recognize. These assembler
operations, although written much like processor instructions, interface to
the assembler instead of the Z-80 processor. They direct the assembler to
perform specific tasks during the assembly process but have no meaning to the
Z-80 processor. Some of these pseudo-OPs generate data values used by your
program and are cal led "data decl aration 11 pseudo-OPs. Others control paging
operations and may be best termed, "listing" pseudo-OPs. A broad range of
operations to invoke the assembly of blocks of code based on conditional
evaluations are supported through many "conditional" pseudo-OPs. These
assembler pseudo-OPs are:

DB

DC

DS

DW

Constant Declarations

specifies a data byte or string of bytes. Also
equivalent to DEFB, DEFM, and DM.

specifies a multiple of byte constants.

reserves a region of storage for program use.
Equivalent to DEFS.

specifies a word (16-bit data value) or a
sequence of words. Also equivalent to DEFW.

Origins and Values

DEFL establishes a value for a label which can
be altered during the assembly.

END signifies the end of a *GET or *SEARCH member.
Will indicate the end of the assembly when
detected in the text buffer. Supplies the
execution transfer address.

EQU estalishes a constant value for a label.

LORG establishes a load origin for executable
object code files.

ORG establishes an execution origin for executable
object code files or in-memory assemblies.

PSEUDO-OPS - GENERAL
4 - 1

IF

IFEQ{$}

!FLT{$}

IFGT{$}

IFNE{$}

IFDEF

IFNDEF

IFREF

ELSE

ENDIF

Assembly Language Pseudo-OP Codes

Conditionals

condition a 1 evaluation of expression.

logically TRUE if expressionl = expression2.

logically TRUE if expressionl < expression2.

logically TRUE if expression! > expression2.

1 og i ca 11 y TRUE if expressionl <> expression2.

logically TRUE if 11 label 11 has been defined
prior to this statement, else FALSE.

logically TRUE if 11 label 11 has not been defined
prior to the statement, else FALSE.

logically TRUE if 11 label 11 has been referenced
but not defined prior to the statement, else
FALSE.

alternate clause to be assembled if the prior
clause has evaluated TRUE.

signifies the end of a conditional block.

Note: 11 {$} 11 denotes alternate macro string comparison.

COM

ENDM

ERR

MACRO

PAGE

SPACE

SUBTTL

TITLE

Miscellaneous

generates an object code file comment record.

designates the end of a MACRO model.

forces an assembly error.

desigantes the prototype of a MACRO model.

transmits a form feed during a listing.

generates extra line feeds during a listing.

invokes a heading sub-title for listings.

invokes a heading title for listings.

PSEUDO-OPS - GENERAL
4 - 2

Assembly Language Pseudo-OP Codes

PSEUDO-OP DB

The 11 DB 11 pseudo-OP is used to define a data byte or series of bytes. Its
syntax is:

DB n{,n}{, 1 c1 }{,s}{,expression}

n defines the contents of a byte at the current
reference counter to be 11 n11

•

'c' defines the content of one byte of memory to
be the ASCII representation of character 11 c11

•

•s• defines the contents of n bytes of memory to
be the ASCII representation of string 11 s 11

,

where 11 n11 is the length of 11 s 11 and must be in
the range 1-63.

expression is a mathematical expression which evaluates
to a number in the range <0-255>.

The constant declaration 11 DB 11 permits the concatenation of its data
arguments using the comma 11

,
11 as an argument separator. Data values are

denoted according to the specifications in the chapter on ASSEMBLY LANGUAGE
INFORMATION.

In order to provide compatibility with constant declarations of other
assemblers, EDAS provides other data declarations that are completely
equivalent to 11 DB 11

• The following pseudo-OPs can be used in lieu of 11 08 11
: OM,

DEFB, DEFM. Because DB, DEFB, OM, and DEFM are exact equivalents and all four
are supplied only for ease of transition from other assemblers, each must be
contained in the OP-code table used by EDAS. However, only 11 DB 11 was selected
to be high up in the OP-code table. Since the OP-code table is searched
sequentially, the use of 11 DB 11 in your source code wi 11 produce a slightly
faster assembly than use of DEFB, DEFM, or DM.

11 DB 11 string arguments permit two connected single-quotes to indicate a
single-quote value PROVIDED that two or more characters precede the 2-quote
appearance in the string. For example:

DB I AB I IC I

will produce the character string: 41 42 27 43. This may have been coded as a
complex dee 1 arat ion such as, 111 AB 1

, 27H, 1 C 1 11
, but the extensive dee l arat ion

support in EDAS provides the easier specification.

PSEUDO-OPS - DATA DECLARATIONS
4 - 3

Assembly Language Pseudo-OP Codes

The following partial assembler listing demonstrates the versatility of
the expanded constant declarations.

0000 54 00070 DB ' This 1
, '

1
, ' is' , ' 1

, ' a 1
,

1
' ,

1 test 1

68 69 73 20 69 73 20 61
20 74 65 73 74

000E 01 00080 DB 1,2,'buckle your shoe',3,4,'close the door'
02 62 75 63 6B 6C 65 20
79 6F 75 72 20 73 68 6F
65 03 04 63 6C 6F 73 65
20 74 68 65 20 64 6F 6F
72

0030 54 00090 DB 'This is a tes 1
,

1 t 1 !80H
68 69 73 20 69 73 20 61
20 74 65 73 F4

In the last example, note the expression argument specified as,

't' !80H

Much more complicated expressions could be utilized.

The expansions of the constant (the rows of eight bytes per row) will
appear in listings. The expansions may be suppressed from your listings by
using the assembler switch, -NE.

PSEUDO-OPS - DATA DECLARATIONS
4 - 4

Assembly Language Pseudo-OP Codes

PSEUDO-OP DC

This pseudo-OP defines a repetitive constant. Its syntax is:

-===

DC quantity,value

quantity

value

specifies how many times that "value" is to be
repeated as a data byte. It can be defined as
any other data definition: n, expression, 'c'.

is the constant to be repeated. As in a 11 DB 11

data declaration, the value can be specified
as a character, 1 c1

, a numeric value, n, or an
expression evaluated to a number in the
range <0-255>.

===
The pseudo-OP, 11 DC 11

, will define a repetitive constant and eliminate the
necessity of defining a series of identical data values by long DB
specifications. For example, the following two statements are equivalent:

DB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

DC 16,0

The latter is much shorter, easier to enter as text, more readable, and takes
up less space in its source form.

The "quantity" must range from 1 to 65535 (a zero value will result in
65536). The 11 value 11 must be less than 256. With this pseudo-OP, you can
generate repetitions of a single constant. For example, say you want to set
100 storage locations to a zero value during the assembly. Insert the
statement,

DC 100,0

and it wi 11 be done. A character constant can also be used for "value" as
illustrated in the following example:

DC 256, 1 A 1

which will set the next 256 storage locations to the letter, 11A11
•

The expansions of the constant will appear in listings just as they do
in the DB expansion. The expansions may be suppressed from your listings by
using the assembler switch, -NE.

PSEUDO-OPS - DATA DECLARATIONS
4 - 5

Assembly Language Pseudo-OP Codes

PSEUDO-OP OS

This pseudo-OP is used to reserve a quantity of storage locations for
use by your program. Its syntax is:

OS nn

nn reserves 11 nn 11 bytes of memory starting at the
current value of the reference counter.

The OS pseudo-OP can al so be entered as 11 DEFS 11 in order to provide a
compatibility with other assemblers that use only 11 0EFS 11 to reserve storage
locations. For reasons of efficiency as discussed earlier, use of the 11 0S 11 in
lieu of the 11 DEFS 11 will result in slightly faster assemblies. Therefore, it
is suggested that if you are transfering over to EOAS from another assembler,
globally change all 11 0EFS 11 pseudo-OPs to 11 0S 11

•

The quantity, 11 nn 11
, can be a data value or an expression. Note that "OS"

does not define data values. The 11 0S 11 pseudo-OP adds the quantity of storage
locations reserved to the current program counter (PC) to calculate a new PC
value. When generating an object code file, this action will cause the next
assembled byte to create a new load record. The following examples depict
various 11 DS 11 declarations.

Examples of the OS pseudo-OP

FCB OS 32

will define a 32-byte region for later use as a File Control Block.
Its origin can then be referenced as 11 FCB".

TABLE OS TABLE LENGTH* TABLE WIDTH

will reserve a quantity of storage locations equal to the result of
multiplying the two terms, TABLE_LENGTH and TABLE_WIDTH.

If your source code is being assembled with the "-CI" switch, EDAS
automatically converts all 11 DS 11 declarations into equivalent 11 DC 11

declarations using a value equal to zero. The above two examples would
therefore be translated to the following:

FCB DC
TABLE DC

32,0
TABLE LENGTH* TABLE_WIDTH,0

PSEUDO-OPS - DATA DECLARATIONS
4 - 6

Assembly Language Pseudo-OP Codes

PSEUDO-OP OW

This declaration specifies a 16-bit data value. Its syntax is:

DW nn{, 1 cc 1 }{,nn}

nn defines the contents of a 2-byte word to be
the value, 11 nn 11

•

'cc' defines the contents of a 2-byte word to be
the characters, 1 cc'

The DW pseudo-OP can also be entered as 11 DEFW 11 in order to provide a
compatibility with other assemblers that use only 11 DEFW 11 to declare data
words. For reasons of efficiency as discussed earlier, use of the 11 DW 11 in
lieu of the 11 DEFW 11 will result in slightly faster assemblies. Therefore, it
is suggested that if you are transfering over to EDAS from another assembler,
globally change all 11 OEFW 11 pseudo-OPs to 11 DW 11

•

In the expansion of the data word, its least significant byte is located
at the current program reference counter while the most significant byte is
located at the reference counter plus one. The data word can be a numeric
constant, an expression that evaluates to a 16-bit value, or a character
constant of one or two characters. The following examples illustrate various
forms of 11 DW 11 data declarations.

0000 1027 00100 OW 10000,1000,100,10,l
E803 6400 0A00 0100

000A 6261 00110

000C 5200 00120
6F00 7900

DW

OW

'ab'

1 R1
,

1 0 1
,

1 y 1

Note that if a single character is defined as a character constant word, the
low-order byte of the word will contain the character value and the
high-order byte of the word will be set to zero.

PSEUDO-OPS - DATA DECLARATIONS
4 - 7

Assembly Language Pseudo-OP Codes

PSEUDO-OP DEFL

The 11 DEFL 11 pseudo-OP assigns a value to a label. The value is permitted
to be changed during the assembly. The 11 DEFL 11 syntax is:

label DEFL nn
label DEFL expression

nn sets the value of 11 labeT11 to the quantity 11 nn 11

expression sets the value of 11 label 11 to the evaluated
result of II expression 11

•

This declaration is similar to the 11 EQU 11 declaration except that the
label value is permitted to change during the course of the assembly without
producing phase errors (which are generally observed as numerous MULTIPLY
DEFINED SYMBOL errors). If the value of 11 label 11 is declared by a 11 DEFL 11

, the
declaration can be repeated in the program with different values for the same
label. One useful purpose to support this method of coding would be to
similate the maintenance of two program reference counters. Observe the
following sequence of code:

.•. some code
PROG$ DEFL $ Save current program counter

ORG DATA$
'

Set PC to data counter
MSGl DB I This is a test mess age' , CR
DATA$ DEFL $ Save current data counter

ORG PROG$ Reset PC to program counter
•.. more code

PROG$ DEFL $ Save current program counter
ORG DATA$ Now set PC to the data counter

MSG2 DB 'Another message' ,LF,CR
DATA$ DEFL $; Save new current data counter

ORG PROG$ then re-establish PC
.•. continuation of program code

The program maintains two address counters. One is utilized as a counter to
keep track of the code portion of the program (PROG$), while the other is
used to keep track of the data portion of the program (DATA$). This technique
can be used to keep the data fields associated with routines in close
proximity to their associated routine in the source code, while the object
code location of the data is collected into some other region.

Labels defined as 11 DEFL 11 will be carried as 11 DEFL 11 in the EQUate file
generation of the Cross-Reference utility. They will also be notated in the
cross-reference listing by a plus sign, 11+ 11

, prefix to the label name.

PSEUDO-OPS - ORIGINS and VALUES
4 - 8

Assembly Language Pseudo-OP Codes

PSEUDO-OP END

The 11 END 11 pseudo is used to denote the exit of a *GET or *SEARCH
process, or when used in the memory text buffer, it will denote the end of
the source code. Its syntax is:

END {nn}
END {label}

signifies the end of the source program (see
text for handling during *GET and *SEARCH).

nn specifies an execution transfer address branch
that will be used by the system loader.

label specifies an execution transfer address branch
to be the value of "label".

The 11 END 11 statement is used to indicate to the assembler, when the last
source code statement is reached so that any following statements are
ignored. If no 11 END 11 statement is found, a warning is produced. The END
statement can specify a transfer address (i.e. END LABEL or END 6000H). The
transfer address is used by the DOS program execution to transfer control to
the address specified in the END statement. Note that the END statement
cannot have a label in the label field of the statement).

The 11 END 11 statement is treated differently if detected while assembling
a fi 1 e that was the target of a "*GET fil espec" or "*SEARCH 1 i brary 11

• In the
case of the *GET, the 11 END 11 is treated as if the end-of-file was reached and
EDAS will switch back to assemble from what ever invoked the *GET. A similar
process takes place with the *SEARCH, except that EDAS continues the
searching process in its normal manner.

PSEUDO-OPS - ORIGINS and VALUES
4 - 9

Assembly Language Pseudo-OP Codes

PSEUDO-OP EQU

This pseudo-OP assigns a constant value to a label. Its syntax is:

label EQU nn
label EQU expression

rm sets the value of label to nn.

expression sets the value of label to the calculated
value of 11 expression 11

The II EQU 11 (equate) pseudo-OP is the generally accepted way to define
constant values for use in your program. This declaration serves a different
purpose than the the data declarations such as DB, DC, and OW. Data
declarations specify storage locations that contain the values declared. The
11 EQU 11 assigns the value to the label; thus, anywhere the label is used, the
assigned value is utilized. Your programs will be more readable, and easier
to maintain if the values need to be altered in a program revision. For
instance, the first starting address of a video memory area might be X'3C00'
or 15360. If your program had a routine to blank out this video area, it
could be written as <A>:

CLEAR LO HL,15360 CLEAR LO HL,SCREEN
LO DE,15360+1 LO DE,SCREEN+l
LO (HL)' I I <A> or LO HL, I I

LO BC,1023 LO BC,CRTLEN-1
LDIR LDIR
RET RET

If you had established labels for the video screen with: "SCREEN EQU 15360"
and "CRTLEN EQU 1024 11

, then the above routine could be re-written as in
which not only makes it more readable, but when you revise your program for
one that has video memory at a different address, all you need do is change
the value of one II EQU" statement.

It is also useful to establish a series of equates for system vectors
that are to be used in your program. Don't code a statement as "CALL 4424H 11

;

establish a label such as "@OPEN EQU 4424H 11
, then your CALL statement is

coded as "CALL @OPEN", certainly much more readable.

An 11 EQU 11 can occur only once for any label. A multiple 11 EQU 11 with
different values will result in the MULTIPLY DEFINED SYMBOL error.

PSEUDO-OPS - ORIGINS and VALUES
14 - 10

Assembly Language Pseudo-OP Codes

PSEUDO-OP LORG

The 11 LORG 11 pseudo-OP is used
of one) that loads at an address
syntax of 11 LORG 11 is:

LORG nn
LORG expression

to establish an object code file (or part
different from where it will execute. The

nn is the address to start loading the object
file (or part of the file).

expression when evaluated, "expression" will be treated
the same as 11 nn 11

•

A load-origin assembler directive, 11 LORG 11
, is provided to cause the load

addresses of the object file to be based on the LORG operand while the
execution code address references wi 11 sti 11 be based on the 11 0RG 11 operand.
This is useful to construct a module (or part of a module) that will load at
an address different from its execution address. For example:

ORG 5200H
LORG 7000H

will assemble code so that absolute address references and the execution
addresses are referenced from X'5200'; however, the object code file will
start loading at X'7000'. Any subsequent 11 0RG 11 will maintain the offset
difference established at the previous "ORG" until another 11 LORG 11 is
detected.

Why incorporate such a facility into the assembler? How can I make use
of it in my programs? Easy answer! Consider this scenario. A program is
composed of three large modules, A, B, and C. Module 11 A11 performs
initialization, has "run-time" routines, and determines whether module 11 B11 or
"C" is to be executed. Consider further, that once either module 11 B11 or 11 C11

execute, the program terminates. If we assemble all three modules so that
they are contiguous to each other, their execution take up more space than is
actually needed. If we need to maximize the amount of memory available for
data storage, buffers, and stack, we could use an 11 LORG 11 to have module 11 C11

load after module 11 B11
, but "ORG" module 11 C11 so that it executes where module

11 B11 executes. When module "A" determines that it needs to execute module 11 C11
,

it can move the entire module in memory to "B's" position easily with an LDIR
instruction. This will free up memory which can be used for the needed
storage.

PSEUDO-OPS - ORIGINS and VALUES
4 - 11

Assembly Language Pseudo-OP Codes

PSEUDO-OP ORG
=============

The 11 0RG 11 pseudo-OP is used to establish an address for the program
counter so that the absolute address references within a program are
designated. The syntax of 11 0RG 11 is:

--

nn

ORG nn
ORG expression

sets the address reference counter to the
value "nn".

expression when evaluated, "expression" wi 11 be treated
the same as "nn". Terms of "expression" must
be defined prior to the "ORG" statement.

===
The "ORG" statement is used to tell the assembler at what address to

begin generating the object code for statements which follow. The assembler
wi 11 generate object code starting at the address specified by 11 nn 11 or
"expression", automatically advancing the program counter by the length of
each instruction or data declaration assembled. The 11 DS 11 data declaration
advances the program counter by the amount of storage locations reserved.

A program can have more than one "ORG 11 statement. If multiple "ORGs" are
used, and one or more inadvertantly will cause the overwrite of a previously
assembled module of code, no warning message of any kind will be issued. It
is left up to the programmer, to protect against such events by use of
conditional tests (using conditional pseudo-OPs) and the "ERR" pseudo-OP.

The ORG pseudo-OP causes no code generation itself but just prepares the
assembly process to start a new object deck record with the generation of
subsequent object code (note that if the evaluated address is one greater
than the current PC, a new object deck record will not be started).

PSEUDO-OPS - ORIGINS and VALUES
4 - 12

Assembly Language Pseudo-OP Codes

CONDITIONAL PSEUDO-OPS

The "conditional II pseudo-OPS provide a powerful way to maintain a
program that is slightly different when assembled to execute on different
machine configurations. Instead of having to maintain multiple copies of a
program, with each copy having some routines and modifications to make a
"custom" version of the program, by using the conditional pseudo-OPs, you can
maintain one set of source code that has conditional segments (or blocks) of
code that perform the "customization". It is very easy to specify which
segments are to be assembled during a particular assembly. The structure of a
conditional block is as follows:

IFxx argument of IF

code block or segment

ENDIF

The argument of the 11 IF 11 takes on different formats depending on the
particular 11 IF 11 pseudo-OP. It can be an expression, a label, or two
expressions separated by commas. More on this later; for now, just refer to
it as the argument. If the argument is evaluated to a non-zero value, it is
interpreted as a logical TRUE condition. If the argument is evaluated to a
zero value, it is interpreted as a logical FALSE condition. When the
condition is TRUE, the conditional segment between the 11 IF 11 and the 11 ENDIF 11

is assembled. If "expression" is evaluated to a zero value then the
conditional block is not assembled but just listed (during the listing pass).
For the sake of uniformity, use the value of 11 -1" for a logical TRUE and a
11 0 11 for a logical false so that, "FALSE EQU .NOT.TRUE" is a valid statment.
These can be set as equates in the beginning of a program as follows:

TRUE
FALSE
MODI
MOD2
MOD3

EQU
EQU
EQU
EQU
EQU

-1
0
TRUE
FALSE
FALSE

BE CAUTIOUS WHERE THE OPERANDS OF THE CONDITIONAL ARE NOT DEFINED PRIOR
TO THE "IF". THE CONDITIONAL BLOCK WILL MOST LIKELY EVALUATE "FALSE" ON PASS
1 AND 11 TRUE 11 ON PASS 2 OR 3.

Consider a program designed for execution on the Model's I, II, or III
computer with different versions for each. The code blocks particular to a
Model may be included in one set of source files but established as
conditional blocks. For example:

PSEUDO-OPS - CONDITIONALS
4 - 13

Assembly Language Pseudo-OP Codes

IF MOD1!MOD3
block of code for Model I or Model II I
ENDIF
IF MOD2
block of code for Model II
END IF

and all that is neccessary to invoke a "custom" assembly is to set one of the
conditional "switches" to TRUE and the others, FALSE.

Conditional segments can also be nested, in
constructs are needed or in case a conditional
conditional sub-segment. For example:

IF expressionl
IF expression2
END IF

ENDIF

case complicated logical
segment itself has a

is a two-level conditional. Conditional segments can be nested to sixteen
(16) levels although you will rarely find a need for more than three.

The conditional construct of IF-ELSE-ENDIF may be used. It is coded as
follows:

IF expression
code block 1.
ELSE
code block 2.
END IF

which implies that if 11 expression 11 is TRUE, code block 1 assembles. If
"expression" is FALSE, then code block 2 will be assembled. The ELSE
construct is not required in a conditional but may be used where you have two
alternative segments that can be based on one switch. For instance, if your
program has only two 11 switches 11

, GO and NOGO, your constructs could be either
of the following:

IF GO
code block 1
END IF
IF NOGO
code block 2
ENDIF

IF GO
code block 1
ELSE
code block 2
END IF

PSEUDO-OPS - CONDITIONALS
4 - 14

Assembly Language Pseudo-OP Codes

As mentioned earlier, the IF argument can take one of three forms. The
conditional structures of these are as follows:

---Type I---
IF exp

code segment

END IF

-----Type II-----­
IFxx{$} expl,exp2

code segment

ENDIF

--Type II I -­
IF yy label

code segment

END IF

"xx" can be 11 LT 11
,

11 EQ 11
, or 11 GT 11 representing less

than, equal to, or greater than conditions
respectively when comparing 11 expl 11 to 11 exp2 11

•

{$} The 11 $11 is specified in macro comparisons with
the expressions treated as strings (see the
chapter on MACRO PROCCESSING).

"yy" can be 11 DEF 11
,

11 NDEF 11
, or 11 REF 11 representing

whether 11 label 11 has been defined, undefined,
or referenced but undefined.

Type II - IFxx

The Type I constructs have already been explained in detail. Among the
Type II constructs, using 11 IFLT 11

, if the value of expression 1 is less than
the value of expression 2, then the conditional code segment will be
assembled. Using 11 IFEQ 11

, the conditional code segment will be assembled only
if expression 1 and expression 2 have equal values. The 11 IFGT" pseudo-OP will
assemble the conditional code segment (i.e. result in a TRUE condition) only
if expression 1 has a value exceeding that of expression 2. The last
possibility is 11 IFNE 11

, which will cause the assembly of the conditional
segment if the expressions are not of equal value.

If, for instance, you want to ensure that a program does not assemble
code past a particular address (maybe it would clobber another routine), then
the ERR pseudo-op could be used in conjunction with IFGT to force an assembly
error as follows:

IFGT $,MAXADDRESS
ERR Program is too long!
ENDIF

which compares the current value of the program counter (PC) to some
previously specified maximum address. Once the PC exceeds this maximum value,
the condition evaluates TRUE resulting in an assembly of the segment. The
11 ERR 11 pseudo-OP is used to force an assembly error.

PSEUDO-OPS - CONDITIONALS
4 - 15

Assembly Language Pseudo-OP Codes

Type III - IFyy

Among the Type III constructs, 11 IFDEF LABEL" will evaluate TRUE if
11 LABEL 11 has been defined prior to the evaluation of the IFDEF on each
assembler pass. 11 IFNDEF LABEL 11 will evaluate TRUE if "LABEL" has NOT been
defined prior to the evaluation of the IFNDEF on each assembler pass. 11 IFREF
LABEL 11 will evaluate TRUE if 11 LABEL 11 has been referenced but NOT defined
prior to the evaluation of the IFREF on each assembler pass.

The Type III constructs will find greater use when working with
libraries of code. For instance, if a code segment is a specific routine and
is surrounded with an IFREF-ENDIF conditional, the routine will only be
assembled if prior to the segment, the 11 label 11 has been referenced but not
yet defined. If 11 label 11 is the entry point symbol to the routine, then the
routine will be assembled if it is needed. In a similar manner, you may have
a library routine that is always to be placed in your program unless its
"label II has already been defined in some alternate routine. Surrounding it
with the IFDEF-ENDIF conditional will inhibit its assembly if your program
has defined that label.

Suppressing FALSE Conditionals

If during the listing pass, you want to suppress
conditional segments that are not assembled (i.e.
FALSE), use the following sequence of operators:

*LI ST OFF
IF expression
*LI ST ON
code segment
*LI ST OFF
ENDIF
*LI ST ON

the listing of certain
they are evaluated as

With this sequence, the 11 IF 11 and 11 ENDIF 11 lines will always be suppressed. The
conditional block will only be listed if the condition being evaluated is
logically TRUE. If all FALSE conditional segments are not to be listed, then
you may use the assembler 11 -NC 11 switch which inhibits the listing of all
FALSE conditionals - including the IF-ENDIF statements.

ENDIF

Very little has been said about the 11 ENDIF 11 statement. Very little need
be said. Each 11 IF 11 statement must be matched up with a corresponding 11 ENDIF 11

•

The 11 ENDIF 11 is needed to define the scope of the conditional code block.

PSEUDO-OPS - CONDITIONALS
4 - 16

Assembly Language Pseudo-OP Codes

PSEUDO-OP COM

This pseudo-OP is used to generate a comment record in the object code
file. Its syntax is:

---------====------==
COM <string>

<string> is the information to be placed as a comment.

An object deck comment block can be generated within the executable
object code file directly by using the 11 COM 11 pseudo-OP. The comment string
must have a length less than 128 characters. As can be noted, the comment
string must be enclosed in angle brackets. The closing bracket may be
omitted. If lower case characters are desired, then single quotes must
surround the angle brackets. Neither the quotes nor the angle brackets will
be a part of the comment record.

The 11 COM 11 pseu_do-OP will generate a comment block in the object file of
the format X'lF' followed by the string length, followed by the string
itself. A typical use would be to place a non-loading copyright statement in
an executable object code file. For example:

COM '<Copyright (c) 1982 by Roy Soltoff>'

will produce the comment record which would be viewed if the file were
1 i sted.

The generation of the 11 COM 11 object code record wi 11 be inhibited if the
assembly is performed using the 11 -CI 11 switch. A binary core-image file can
not have a non-loadable record.

PSEUDO-OP ERR

The 11 ERR 11 pseudo-OP is used to force an assembly error. Its syntax is:

ERR {message}

message is an optional message to inform what is wrong.

This pseudo-OP forces an immediate warning error
optional message. It is commonly used in a conditional
trapping.

Miscellaneous Pseudo-OPs
4 - 17

and displays the
block for error

Assembly Language Pseudo-OP Codes

PSEUDO-OP MACRO

The MACRO pseudo-OP is used to define the prototype of a MACRO model.
Its syntax is:

mname MACRO {#parml}{=dfltl}{,#parm2{=dflt2}}{, ••. }

mname is the MACRO name used to refer to the MACRO

#parmn are dummy parameters of the MACRO which will be
replaced by actual parameters during the MACRO
invocation.

dfltn are optional defaults to be used for the dummy
parameters when a parameter is not provided in
the MACRO invocation.

MACROs are an extremely powerful tool in an assembler. It provides great
convenience in writing programs in building block form. For this reason, an
entire chapter has been devoted to MACROs. You should refer to the chapter
entitled, MACRO PROCESSING, for information concerning the use of MACROs.
Suffice it to say here that MACRO invocations can be nested to eight levels,
parameters may be passed by position or by keyword, and a special operator is
available to test the length of parameter substitutions.

PSEUDO-OP ENDM

This pseudo-OP is used to specify the scope of a MACRO model. It is used
much like the 11 ENDIF 11

• Its syntax is:

mname MACRO parms
mod el statements
ENDM

Miscellaneous Pseudo-OPs
4 - 18

Assembly Language Pseudo-OP Codes

LISTING PSEUDO-OPS

Four pseudo-OPs are available to control the assembler listings. These
are: PAGE, SPACE, SUBTTL, and TITLE. Their syntax is:

PAGE {OFF}

SPACE n

SUBTTL {<string>}

TITLE <string>

OFF is an optional parameter for PAGE to suppress
the listing of the PAGE statement.

n specifies how many line feeds to generate.

<string> is the title or sub-title string to appear in
the listing headings.

A new page can be forced to provide separation of routines, modules,
etc. by using the 11 PAGE 11 pseudo-op. This pseudo-OP wi 11 be ignored if it
appears between 'klIST OFF and 'kL!ST ON. "PAGE" accepts an operand of 11 OFF 11 to
suppress the listing of the line containing the PAGE pseudo-OP (i.e. "PAGE
OFF" will issue the form feed but suppress printing of the line containing
the 11 PAGE 11 pseudo-OP).

"SPACE n11 performs line spacing whenever the "SPACE" pseudo-OP is used.
When assembled, 11 n11 is the number of lines to space and is interpreted as
modulo 256. The line containing the SPACE pseudo-op is not displayed. This
pseudo-op also will be ignored if it appears between 'kLIST OFF and 'kLIST ON.

A sub-title to a heading is permitted with the 11 SUBTTL 11 pseudo-OP. The
subtitle string length can be from zero (0) to 80 characters in length. A
zero length indicates that sub-titling is disengaged.

Lower case strings can be maintained by the use of single quotes
surrounding the angle brackets. You may change the subtitle by using
additional "SUBTTL II pseudo-OPs throughout the text. Subtitles wi 11 appear on
the first page fol lowing the 11 SUBTTL II pseudo-op. A 11 PAGE 11 pseudo-OP fol lowing
a 11 SUBTTL 11 will force the subtitle to appear immediately. If the 11 SUBTTL 11

text string is null (of zero length), then subtitling will cease on the
subsequent page. A line will also be skipped between the subtitle and first
printed text line on the page. Where many 'kGETs are being used, you may want
to establish a sub-title for each to provide a visual indication on the
listing. For example:

Miscellaneous Pseudo-OPs
4 - 19

Assembly Language Pseudo-OP Codes

SUBTTL '<Module B - initialization routines>'
PAGE OFF

*GET MODULEB:1
SUBTTL '<Module C - data extraction routines>'
PAGE OFF

*GET MODULEC:1

will print the sub-title on each page of the listing associated with MODULEB.
Ideally, each module should be preceded with a SUBTTL statement.

The 11 TITLE 11 pseudo-OP automatically invokes a page heading and adds the
title to the headings of assembler listings. The title string is limited to
28 characters and only one "TITLE II is accepted. The 1 eft and right carets
(angle brackets) must be entered but are not output in the listing - they
serve only to delimit your title string. The title line will include the EDAS
version, the date and time retrieved from the system, your title string, and
a page number [page number is limited to the range <1-255> and will wrap
around to zero if more than 255 pages are printed]. For this reason, if you
use a title, it is advisable to set DATE and TIME prior to executing the
Editor Assembler. A line will be skipped between the title and start of
printed text (or subtitle if used). Lower case titles will be maintained by
surrounding the angle brackets with single quotes as in:

TITLE '<This is an UC/le title>'

The first 11 TITLE 11 pseudo-OP found in the text will be used for titling.
Any other 11 TI TLE II pseudo-ops wi 11 be ignored.

Miscellaneous Pseudo-OPs
4 - 20

Assembler Directives

ASSEMBLER DIRECTIVES

The MISOSYS Editor Assembler, EDAS Version IV, supports five assembler
commands. In contrast to source statements which are translated to machine
language, these directives are 11 conversation 11 to the assembler. Each directs
the assembler to behave in a particular manner or perform a specific
function. The directives, by themselves, do not generate any machine language
code - they merely act as "commands" to the assembler. Each "command" must
start in column one of a source statement line, and must start with an
asterisk (*). Only the first character of each directive is significant. The
entire directive "word" may be entered, or the directive may be abbreviated
to its first character. The assembler directives are:

*GET file Causes the assembler to begin reading source
code from the II fi 1 e11

•

*LIST OFF Causes the assembler listing to be suspended,
starting with the next line.

*LIST ON Causes assembler listing to resume, starting
with this line.

*MOD exp Advances the "module" character substitution
string and optionally sets/resets the prefix.

*PREFIX exp Establishes or disengages a prefix character
for the MACRO substitution string.

*SEARCH lib Invokes an automatic search of the Partitioned
Data Set (PDS) 11 lib 11 to resolve any undefined
references capable of being resolved by PDS
assembler source member modules.

DIRECTIVES - GENERAL
5 - 1

Assembler Directives

*GET filespec

This directive invokes assembly from a source disk file. Its syntax is:

*GET filespec

filespec Causes the assembler to begin reading source
code from the file, 11 fi lespec".

This directive tells the assembler to temporarily switch its source
assembly to the file identified as "fi lespec", and use it to continue the
assembly. A default file extension of 11 ASM 11 wi 11 be used if none is provided
in the directive statement. The file itself can be headered and/or numbered,
as EDAS will automatically detect its type and adjust accordingly. When the
end-of-file is reached, or an assembly language 11 END 11 statement is read,
assembly automatically resumes from the next statement following the
statement which invoked the "*GET". Any 11 END 11 statement read during the *GET
process wi 11 be ignored as the program end. The only "END" accepted wi 11 be
that in the text buffer.

11 *GETs 11 can be nested to five (5) levels. That is, a statement in memory
can GET a file which GETs a file which GETs a file which GETs a file which
GETs a file. This assembler directive is extremely powerful. It can be used
to provide the capability of assembling large programs which are stored on
disk in modules, since more than one *GET may be in the text buffer or
11 gotten 11 file.

The text buffer can be composed of nothing but *GET statements (and one
END statement) which will provide maximum space in the text buffer for
generation of the symbol table. For example, the following could represent
the source linkage needed to assemble a program called 11 PARMDIR/CMD 11

:

; PARMDIR/ASM - 04/07/82

; Linkage to assemble PARMDIR
;*=*=*
*GET PARMDIRl
*GET PARMDIR2
*GET PARMDIR3

END PARMDIR

5 - 2

Assembler Directives

LIST ON/OFF

This directive is used to suppress the listing of blocks of code. Its
syntax is:

*LIST off /on

OFF Causes the assembler listing to be suspended,
starting with the next statement.

ON Causes assembler listing to resume, starting
with this statement.

The pair of directives, "*LIST OFF" and "LIST ON", can be used to
suppress the listing of a block of code. Once the "*LIST OFF 11 is invoked, all
statements following will not be listed to the display or the line printer
(if assembler switch -LP is specified). The directive "*LIST ON"
re-establishes standard listing. An exception to the suppression is that any
assembler source statement containing an assembly error will be listed along
with its appropriate error message. In this manner, you can use an "*LIST
OFF" directive at the beginning of your assembly source (to suppress all
listing) and lines containing errors will be forced to be displayed by EDAS.

Examples of the *LIST directive:

*LIST OFF
DB

*LIST ON

*LIST OFF
DB
LO

*LIST ON

'This line will not be displayed!'

'Only the next line will be displayed!'
(M,100

DIRECTIVES - LIST
5 - 3

Assembler Directives
/

*MOD expression

This directive is used to increment a character substitution string for
the purpose of simulating local labels. Its syntax is:

*MOD {expression}

Advances the 11 module 11 character substitution
string.

expression is an optional expression to specify a prefix
character to the substitution string or reset
the current prefix.

The 11 *MOD 11 directive will increment a string replacement variable each
time the directive is executed. The string will replace the question mark,
11 ? 11

, character in labels and label references found in any line assembled
from a *GET or *SEARCH file. Its use is essentially applicable to subroutine
libraries where duplication of labels could occur. By specifying the 11 *MOD 11

directive as the first statement of each module of code and by using a
question mark in labels, you can construct source subroutine libraries for
use in your programs without having to worry about duplicate labels occuring.
Unless at least one 11 *MOD 11 statement is specified, the question mark wi 11 not
be translated.

Labels such as $?001 will have the 11 ?11 replaced with the current 11 MOD 11

string value. Thus, a 11 *MOD 11 directive preceding each module will force $?001
labels in each module to be distinctly named by having the question mark
replaced with the substitution string. The 11 MOD 11 string value cycles from
A-Z, then from AA-AZ, BA-BZ, •.. , ZA-ZZ. This will allow for a simulation of
11 local 11 labels. Remember, the 11 ? 11 substitutions will only be made to those
source lines fetched from a *GET or *SEARCH file, not from statements
resident in memory! It really was designed that way folk's, it 1 s not just a
limitation.

If you need more than the 702 unique string values generated by a
single/dual alphabetic string (26*26+26), you will have to specify a "MOD
prefix". The prefix invokes a user-specified third character for the
substitution string. The "*MOO" directive provides for the assignment of the
character prefix to the substitution string. You control the prefix. For
ex amp 1 e:

*MOD 1 $ 1

assigns the character 11 $ 11 to prefix all 11 MOD 11 substitutions. Once invoked,
you can change to any other character by another 11 *MOD 11 command or remove the
prefix by entering an expression whose value is zero.

DIRECTIVES - *MOD
5 - 4

Assembler Directives

*PREFIX expression

This directive gives you the capability of specifying a constant third
character to the MACRO substitution string. Its syntax is:

*PREFIX expression

expression establishes or disengages a prefix character
for the MACRO substitution string.

The Macro substitution string can be prefixed with a user-entered
character constant. This is achieved by using the "*PREFIX" assembler
directive. The expression character or value entered in field two becomes the
prefix character. It must be a character that is valid for assembler source
labels. For example,

*PREFIX 1 $ 1

will cause MACRO local label string substitution to be expanded as 11 $AA 11
,

11 $AB 11
,

11 $AC 11
, ••• A binary zero value will eliminate any prefix character

once invoked. For example,

*PREFIX 0

will disengage the MACRO string substitution prefix character.

For more information on the use of the MACRO prefix character, see the
chapter on the MACRO PROCESSOR.

DIRECT!VES - *PREFIX
5 - 5

Assembler Directives

*SEARCH filespec

This directive is used to invoke an automatic search of a Partitioned
Data Set (PDS) source library. Its syntax is:

*SEARCH filespec

fi lespec Invokes an automatic search of the PDS
11 filespec/LIB 11 to resolve any undefined
references capable of being resolved by
PDS assembler source member modules.

This assembler "*SEARCH filespec" directive is a very powerful feature.
It will invoke, a directory search of the Partitioned Data Set 11 filename/LIB 11

for all members that will resolve undefined references in the source
assembly. This provides a source library structure for EDAS. "*SEARCH" will
require two (2) levels of 11 *GET'8 nesting. Also, restrictions prevent a
"*SEARCH" member from using a 11 *GEP directive or another 11 *SEARCH 11 directive
(such a request would be ridiculous anyway). The library members must be
lowest level. The default file extension for searched files is 11 LIB 11

•

The PDS source library constitutes members composed of one or more
routines. Each routine that needs to be automatically fetched should have its
routine name (the label field entry) in the PDS member directory. This is
accomplished by naming the source file to be appended to the library the same
name as the routine or by appending using a MAP. Details on constructing and
using Partitioned Data Sets is included with PDS documentation. The PDS
utility is available separately.

EDAS will search the PDS library and locate a member name that matches
up with a symbol table entry. If that symbol is currently undefined, the
source member will be accessed and read just as if it were the target of a
11 GEP. EDAS wi 11 verify that the member just accessed did in fact define the
symbol invoking its access. If a member is accessed and there exists no
symbolic label in the member that has the same name as the member name, EDAS
wi 11 abort the assembly and advise of a library error by displaying the
mess age:

Member definition error: filespec(member)

At the conclusion of the member 1 s source code, EDAS will continue to
search the PDS library until it exhausts all PDS members. There are no
restrictions on the order of members. Routines in one member can reference
other members with complete disregard as to any ordering of entries in the
PDS. EDAS will correctly access all members required.

DIRECTIVES - *SEARCH
5 - 6

Assembler Directives

Where more than one routine is in a member, each should be surrounded
by IFREF's/ENDIF and each should have an entry in the member directory (you
must use the MAP option of PDS to provide multiple entries to a member). This
will benefit by not having needless routines appear in your object code
output. For example, the following depicts two routines stored as one member
in a PDS.

; Entry for routine entitled "MOVE"
IFREF MOVE

MOVE ;Routine of code

.
END IF

Entry for routine entitled "SHIFT"
IFREF SHIFT

SHIFT ;Routine of code

END IF

If your source code references "SHIFT" but not "MOVE", as long as both
"SHIFT" and "MOVE" are member entries in the library PDS directory, a
"*SEARCH" of the library will access the member and assemble only the 11 SHIFT 11

routine. You should read the section on the 11 IFREF 11 conditional in the
chapter on ASSEMBLER PSEUDO-OPS to understand the evaluation of the "IFREF".

DIRECTIVES - *SEARCH
5 - 7

Macro Processing

WHAT IS A MACRO?

In virtually all programs, you will find particular sequences of code
that are repeated. These sequences might be termed short routines. They could
be so short that the overhead needed to set them up as CALLable routines is
ineffective. Or, they could be longer routines that just cannot be
constructed as CALLable segments. You may even want a code sequence to be an
in-line assembly in contrast to a CALLable routine for the purpose of fast
execution. By far the most needed function, is to be able to have
parameterized routines - algorithms that operate on different values each
time the algorithm is invoked.

There are at least three ways to deal with routines that are repeated in
a program. You can <I>nsert the entire routine wherever it is needed. You
could also <C>opy it from the first appearance to wherever you needed the
routine. Or you could establish the routine as a macro. The first method is
obviously tedious on your fingers. The second, is not tiring, but could take
up more source storage than is desirable. Also, if you decide to change the
routine's lalgorithm, having many copies in a program can be cumbersome to
update. ,

The third method mentioned is the use of macros. Consider the following
commonplace sequence of code:

LO HL, VALUE
LO (MEMORY),HL

How many times is this little sequence repeated in your programs? Five? Ten?
If we set up a macro near the beginning of our program that looked something
like this:

STOR MACRO #VAL,#MEM
LO HL, #VAL
LO (#MEM),HL
ENDM

;Macro to store "VAL II into memory
;Get value into HL
;Load value into memory
;End of the macro

then we could perform the above two statements with one macro call as
fo 11 ows:

STOR VALUE,MEMORY ;Invoke the macro

The first part of the example, defines a macro called "STOR". This is done
exactly once per program! If we save our macros in a macro source file, each
of our programs could "*GET MACROS"; thus, we would not have to even manually
enter the macro into each program.

We invoke the statements defined in the macro by specifying the macro
name AS IF IT WERE AN OPCODE. Using the macro invocation method, we can save
storage space and introduce structured techniques to our coding. Notice that
~e have used some fictitious names when the STOR macro was defined. These
ames are cal led "dummy" parameters. They serve to provide a means to pass

USING MACROs
6 - 1

Macro Processing

actual parameters when the macro is invoked. It is through the dummy
parameters that the real power of the macro is utilized. During the macro
invocation, the model statements are expanded with substitutions for the
dummy parameters that are provided in the macro call.

MACRO DEFINITION

The format for a macro definition is illustrated in the following
example:

MOVE MACRO
LO
LO
LO
LDIR
ENDM

#parml,#parm2=dflt2,#parm3
HL,#parml
DE,#parm2
BC,#parm3

The macro definition consists of three parts: a macro prototype, a macro
model, and the ENDM statement. The prototype is used to specify the macro
name and the durrrny parameter names used in the model. Default substitutions
may be specified in the prototype to be used if the corresponding parameter
is not passed in the macro invocation. The macro model contains all of the
assembler statements to be generated when the macro is invoked. The model is
sometimes called the macro skeleton or template. The dummy parameter names
occupy the positions where the actual parameters will be placed by the macro
processor in EDAS. The third part, the ENDM statement, is used to indicate
the end of the macro model.

When a macro is defined, it is not assembled into your program. The
macro prototype is parsed and analyzed. The macro definition is then stored
in a compressed format within the macro storage area. Comments appearing with
the macro definition are not stored. That means that if the macro expansions
are listed in the assembler listings, they will not include the comments -
only the definition willo

USING MACROs
6 - 2

Macro Processing

Macro Prototype

The MACRO pseudo-OP is used to define the prototype of a macro model.
I ts syntax is:

mname MACRO {#parml}{=dfltl}{,#parm2{=dflt2}}{, ... }

mname

#parmn

dfltn

is the macro name used to invoke the macro.

are dummy parameters of the macro which will
be replaced by actual parameters during the
macro invocation. 11 #11 is a required prefix.

are optional default strings to be used for
the dummy parameters when a parameter is not
provided in the macro invocation.

Macros are named just like symbolic labels. The same rules apply. The
length of macro names can range from <1-15>. Special characters<@, $, > may
be used in the name construct. Do not use the question mark in macro names as
it would conflict with the symbol sub st ituti on string use made of 11 ? 11

•

There is no upper limit on the number of macro parameters; however, you
can not exceed the length of a standard assembler source statement.
Therefore, the statement length becomes the limiting factor. As is the case
with macro names, the rules for naming dummy parameters are identical to the
rules for labels. The II dummy" names are not included in the symbol table
generated by EDAS, thus there is no restriction on reusing the same name as a
"dummy" for a label; however, to avoid confusion, it is recommended that you
avoid using dummy names as symbolic label names.

Default strings can contain any character except the comma, 11
,

11
• The

comma is used as a field delimiter. There is no limit to the length of a
default string other than the limiting factor of the statement length.

Macros must be defined prior to use but can be defined in either disk
"*GET files" or memory text.

Macro Model

Any valid Z-80 statement, EDAS pseudo-OP,
"*GET" or "*SEARCH") is valid in the macro
pseudo-OP (no nested definitions, please).

USING MACROs
6 - 3

or assembler directive (except
model - except the "MACRO"

Macro Processing

ENDM pseudo-OP

This pseudo-OP is used to specify the scope of a macro model. It is used
much like the 11 ENDIF 11

• Its syntax is:

mname MACRO parms
model statements
ENDM

The "ENDM" pseudo-OP must be used to let the macro processor know what
is the last macro model statement.

Macro Definition Examples

This macro will move a block of memory from one location to another. If
the "length" parameter is omitted, then a value of 11 255 11 will be used:

MOVBLK MACRO #FM,#TO,#LEN=255
HL,#FM LO

LO
LO
LDIR
ENDM

OE,#TO
BC, #LEN

This is a macro to clear a region of memory (i.e. set to 0). This macro
will invoke the MOVBLK macro in a nested invocation:

CLRMEM MACRO #BUF,#LEN=255
LO HL,#BUF
LO (HL), 0
MOVBLK #BUF,#BUF+l,#LEN
ENOM

This macro wi 11 add the 8-bit register 11 A11 to 16-bit register pair "HL 11
:

AODHLA MACRO
ADD
LO
ADC
SUB
LO
ENDM

A,L
L,A
A,H
L
H,A

USING MACROs
6 - 4

Macro Processing

There is no requirement that a macro must contain dummy parameters as is
evidenced by the last example.

Incorporating Conditionals

Conditional pseudo-OPs can be specified in macro models. For instance,
say you want the MOVBLK macro to be able to perform a non-destructive move (a
destructive move would be where the destination is an address between "from"
and "from+length-1 11

). You can insert conditional pseudo-OPs to test the
parameters during the assembly of the expansion (labels substituted for #FM
and #TO must be defined prior to invoking the MACRO). Then, only certain
segments of the macro will be assembled according to the result of the
evaluation. Analyze the following example:

MOVBLK MACRO
IFNE
LO

MACRO NESTING

IFGT
LO
LO
LOIR
ELSE
LO
LO
LOOR
ENOIF
ENO IF
ENOM

#FM,#TO,#LEN=255
#FM,#TO ;Don't expand if #FM=#TO
BC,#LEN ;Establish the length
#FM,#TO ;Do we LDIR or LDOR?
HL,#FM ;#FM> #TO=> LOIR
DE,#TO

HL,#FM+#LEN-1
OE,#TO+#LEN-1

;#TO> #FM=> LDOR

The CLRMEM example depicts a macro that nests a macro invocation. Macros
may be nested to seven (7) levels. That is, at any time, macro expansions for
7 macros called in a chain can be pending. It is very important to note that
macro definitions cannot be nested. For instance:

ABC MACRO #PARM
(mode 1 statements)

XYZ MACRO #PARMs, .•.
(mode 1 statements)
ENOM
ENOM

is illegal and will result in an assembly error. It is entirely correct,
however, to invoke a macro within a macro definition prior to the definition
of the called macro. The called macro must, however, be defined prior to
calling the first, or highest level, macro. For example:

USING MACROs
6 - 5

ABC

MOVE

MACRO
(model
MOVE
(model
ENDM
MACRO
(model
ENDM

Macro Processing

#PARMS, ...
statements)

parm,parm ;call macro 11 MOVE 11

statements)

#parml,#parm2,#parm3
statements)

is perfectly legal. The expansion of the 11 MOVE 11 macro is not performed during
the definition of the 11 ABC 11 macro but rather during the invocation of 11 ABC 11

•

If macro A 11 calls 11 another macro, say B, any dummy parameter in the
macro call of B that matches a dummy in macro A, will be considered part of
macro A and the parameter substitution will be invoked by the parameter
passed when the user calls macro A.

MACRO INVOCATION

The invocation of a macro is termed a macro "call 11. The macro processor
then proceeds to replace the call with the model statements specified when
the macro was defined. The replacement of the macro call by the macro model
statements is termed the macro "expansion".

During the expansion, the 11 actual 11 parameters passed in the call
statement are substituted for the "dummy" parameters which appear in the
macro model and which are designated in the prototype of the macro. Note that
the actual parameter values are character strings and can be labels,
expressions, or data constants. An actual parameter can even be a quoted
string data declaration if its use is designed into the macro model.

The entire expanded macro model is listed during the listing pass (phase
two) of EDAS. You may find that you don't really want to see these expansions
since the macro definition contains the entire illustration of the macro. An
assembler switch, 11 -NM 11 is provided in the <A>ssemble command to suppress
listing of macro expansions. In the case of nested macro calls (i.e. a macro
is defined which calls another macro which was separately defined), only the
primary macro call will be listed if the "suppress" switch is invoked.

The substitution of the actual character string parameters for the
du1m1ys occurs during the macro expansion when the macro is called. Since a
macro can have more than one parameter, it is necessary to have a procedure
that specifies which actual parameter corresponds to each dummy parameter.
There are two methods supported in EDAS. Parameters can be passed to the
macro expansion when calling by either position or keyword.

USING MACRbs
6 - 6

Macro Processing

Positional Parameters

"Positional II parameters are corre 1 ated by the position they appear in
the macro call. For example, if the 11 MOVBLK 11 macro were called by the
statement:

MOVBLK VIDEO,CRT_BUFFER,CRT_SIZE

then the substitution string "VIDEO" would replace
the string "CRT BUFFER" would replace every
"CRT SIZE" would- replace the dummy parameter,
strings are positionally correlated with the
parameters in the macro prototype.

every appearance of 11 #FM 11
,

appearance of 11 #T0 11
, and

11 #LEN 11
• Note that actual

positions of the dummy

If you wish to omit an actual parameter in a macro call, then you must
supply the comma to denote its place. For instance:

SHIFT 4200H,,100H

omits the middle of three parameters. Generally, a default would have been
provided in the macro definition.

Keyword Parameters

If the number of parameters is large, it is sometimes burdensome to
remember the order of the parameters, or to provide the correct number of
commas if a series of parameters are omitted. These drawbacks are remedied by
the use of "keyword" parameters. The macro call parameter list can identify
the actual parameters by using the name of the dummy parameter as well. The
keyword syntax is:

#dummy=actual parameter

mname #parm2=actual2,#parm3=actua13

==================================-==============-====--=======

If the previous macro call was invoked by keyword parameter
specification, it could look something like this:

SHIFT #LEN=100H,#FM=4200H

USING MACROs
6 - 7

Macro Processing

Mixing Positional and Keyword Parameters

A single macro invocation can intermix both positional and keyword
parameters. The point that needs clarification, is what positions are
actually denoted in the parameter list. It is simply treated. In a mixed
parameter list, keyword parameters are ignored when considering place
positions. For example, in the following macro call:

SHIFT #LEN=100,BLOCK,BUF_START

even though the length parameter appeared first in the parameter list, since
it was designated as a keyword, it is ignored from the positional count and
11 BLOCK 11 is the first parameter with 11 BUF_START" taking up second place. In a
similar manner:

COMP PARM1,#P6=2,,PARM3,#P8=38,PARM4

11 PARM1" is in position one, the second parameter is omitted (the double
comma), 11 PARM3 11 and PARM4 11 are in the third and fourth positions
respectively. The sixth and eighth parameters have been entered by keyword.

Please note that the parameter list contains five parameters. Thus if
you were to use the 11 %% 11 operator which returns the number of parameters
passed in a macro call (11 %% 11 is described later), it would return a value of
five.

LOCAL LABELS

So far, all of the examples have shown macro models without labels. What
would happen if we had a macro defined as follows:

· FILL MACRO
LO

FLP LO
INC
DJNZ
ENDM

#CHAR,#NUM
B,#NUM
(HL), #CHAR
HL
FLP

We would have a problem because every time the macro was called, the label,
11 FLP 11

, would be used. If "FILL" was invoked more than once, the assembler
would generate MULTIPLY DEFINED SYMBOL errors on each expansion. We have to
be able to use labels, but we need to find a way to be able to make 11 unique 11

labels on each macro expansion.

EDAS provides a facility for doing this by keeping a substitution string
which is changed each time a macro is expanded - any macro. The substitution
string replaces the question mark character, 11 ? 11

, during the macro expansion
whenever it appears outside of single quotes in a macro model statement. Each
time a macro is expanded, the "value" of the string will be changed. The

UStI NG MACROs
6 - 8

Macro Processing

11 value 11 starts with the single letter 11 A11
, changes to 11 B11

, ••• ,
11 Z11

, then
increments to the two-letter strings, 11 AA 11

, and changes to 11 AB 11
,

11 AC 11
, ••• ,

11 BA 11
, ••• ,

11 ZZ 11 each time a macro call is ~ade. Thus, by incorporating the
question mark as one of the characters 1n the label of a macro model
statement, it can be used to uniquely identify 1 abels local to a macro. You
may want to standardize the way you create labels to ensure that uniqueness
is maintained. For example, if you use macro labels of the form, 11 $$?1 11

,

11 $$?2 11
, ••• , these will expand to 11 $$AA1", 11 $$AA2 11

, within one macro
during its first expansion. The second macro expansion will create 11 $$AB1",
11 $$AB2 11

, ••• You can then repeat the use of 11 $$?1 11
,

11 $$?2 11
, ••• , in another

macro since for each macro expansion, the substituted string will be
different.

The substitution string will be different from the 11 *MOD 11 directive
substitution but is similarly used. Macro expansion substitution of 11 ? 11 takes
precedence over *MOD substitution. In the case of nested macros, each nest
level will have its own unique substitution (since each nest is a macro call
which invokes an expansion).

The macro substitution
character constant. This is
directive as in:

string can be prefixed
achieved by using the

*PREFIX character-expression

with a user-entered
"*PREFIX" assembler

where the expression character or value in the argument becomes the prefix
character (it must be valid for assembler source labels). For example,
"*PREFIX 1 $111 will cause macro local label string substitution to be expanded
as 11 $AA 11

,
11 $AB 11

,
11 $AC 11

, ••• A binary zero value will eliminate any prefix
character once invoked.

By using the question mark string substitution specifier, the previous
macro would be defined like this:

FILL MACRO
LO

$$?1 LO
INC
DJNZ
ENDM

#CHAR,#NUM
B,#NUM
(HL), #CHAR
HL
$$?1

USING MACROs
6 - 9

Macro Processing

STRING COMPARISONS

It is sometimes desirable to be able to test within a macro model, the
exact string passed as a parameter. Four conditional pseudo-OPs have been
added strictly for string comparisons within macro processing. These are:

IFLT$

IFEQ$

IFGT$

IFNE$

stringl,string2

stringl,string2

stringl,string2

stringl,string2

TRUE if stringl < string2

TRUE if stringl = string2

TRUE if stringl > string2

TRUE if stringl <> string2

These pseudo-OPs provide TRUE/FALSE evaluation in the comparison of
stringl to string2 (like the non- 11 $11 pseudo-OPs do with mathematical
expressions). Obviously, hard encoding of both stringl and string2 would be
nonsense! Aha, he said ... If we use a macro dummy parameter, it will be
substituted by the actual parameter string passed in the macro call
expansion. This means that the macro itself can test the parameter string in
a limited manner. For example:

IFNE$
LD
ENDIF

#TO,(DE)
DE,#TO

as part of a macro model, will have the "#TO" replaced during the expansion.
The test becomes dynamic! The dummy parameter can be either stringl or
string2 - it doesn't matter.

These string conditional pseudo-OPs can only be useful in macros. That's
because the evaluation, to make sense, has to be dynamic.

USING MACROs
6 - 10

Macro Processing

TESTING STRING LENGTHS

Another feature available in the macro processor is the per cent sign
11% 11 operator. This operator is used to recover the 1 ength of the passed
parameter string and the number of parameters passed in the macro call. Note
that the 1 imitation for the use of the 11 % 11 operator, i,s that it is accept ab 1 e
only for parameters of the current macro expansion. That means that you can't
test for lengths outside of the current macro if you are nesting macro calls
(macros cannot be recursive!). The operator can be used like these examples:

LD B,%#PARM

IFGT %#PARM1,6
ERR Parm too long!
ENDIF

;loads B with the length of #PARM

;Restricts parml to a length <1-6>

IFLT
ERR
ENDIF

%%,4 ;This macro requires 4 actual parms
Missing required parameters!

As can be noted, the 11 %% 11 operator wi 11 return the number of parameters
passed in the current Macro call. When a dummy parameter name (including the
11 #11 prefix) follows the per cent operator, the length of the parameter string
is returned.

These values can be tested arithmetically to produce a TRUE/FALSE result
(as was just demonstrated), or they can be used directly to represent logic
TRUE/FALSE conditions. Realizing that if a parameter was not passed in the
parameter list of the macro call, its length would be zero. A zero is also a
logical FALSE. EDAS will accept as TRUE, any non-zero value (in normal use of
TRUE/FALSE specifications, 11 -1 11 is recommended for TRUE to maintain proper
evaluation of the 11 aNOT. 11 operation). Thus, the string lengths can be
minimally used to test if the parameter was not passed (%#parm=0=FALSE) or
the parameter was passed (%#parm<>0=TRUE).

CONCATENATING MACRO LABELS

You can concatenate a string to a dummy parameter name by connecting it
with the concatenation operator, 11%& 11

• For instance, the model statement:

IFREF #NAME%&L

will have the 11 #NAME 11 replaced by the MACRO call substitution string appended
with the letter 11 L11

•

USING MACROs
6 - 11

Editor Assembler Commands

The EDAS Version IV Editor Assembler can perform the following commands.
These commands may be typed after the prompt symbol 11 >11

• The prompt symbol
appearance indicates the "command mode" of the Editor Assembler. The
following list contains all command mode instructions recognized by the
Editor Assembler with a brief description of each.

A <A>ssemble source currently in the text buffer.

B ranch to a specified address.

C Globally <C>hange a string of characters (STRINGl) to another string of
characters (STRING2) throughout a range of text lines.

C <C>opy a block of lines to another location.

D <D>elete specified line(s).

E <E>dit a specified line of text.

F <F>ind a specified string of characters.

H Provide <H>ard copy output (line printer) of a specified range of text
bu ff er lines.

I <I>nsert source text line(s) at a specified line with a specified line
number increment.

K <K>ill a file from a diskette.

L <L>oad a source text file from disk.

M <M>ove a block of text from one location to another.

N Re<N>umber source text lines in the text buffer.

P <P>rint a specified range of source text code currently in the text
buffer.

Q <Q>uery a directory from the designated drive.

R <R>eplace lines currently in the text buffer.

S <S>witch the upper case/lower case conversion mode.

T <T>ype source text lines without line numbers to a line printer.

U Display the memory <U>tilization - bytes used by the text, bytes
available, and the first free address.

V <V>iew a file without loading it into the text buffer.

COMMANDS - SUMMARY
7 - 1

Editor Assembler Commands

W <W>rite the current text buffer to disk.

X e<X>tend the text buffer by eliminating the Assembler.

Z Command reserved for user.

1 Alter printed lines per page and page length.

Send a message to a Job Log (LOOS' only).

CLEAR Clear the CRT screen.

UPARW Scroll up one source text line.

DNARW Scroll down one source text line.

LTARW BACKSPACE key

RTARW TAB key

SRARW Page forward one screen.

PAUSE Performs a functional pause of any operation: <SHIFT@ (Model I/III)>
<HOLD (Model II)> for the PAUSE function).

UPARW => the
DNARW => the
LTARW => the
RTARW => the
SRARW => the

up-arrow key
down-arrow key
left-arrow key
right-arrow key
shifted right arrow key (F2 on Model

COMMANDS - SUMMARY
7 - 2

I I)

Editor Assembler Commands

<A>SSEMBLE

The <A>ssemble command is used to invoke the assembly of your source
stream from memory and optionally, disk files (when 11*GET filespec 11 or
11 *SEARCH library" is used in the source stream). The <A>ssemble command is
also used to create a cross reference data file for downstream processing by
the XREF/CMD program which will create a complete symbol cross reference
listing. The syntax of the <A>ssernble command is:

A {filespecl/CMD}{,filespec2/REF} {-SWITCH {-SWITCH} •.• }

filespecl is the filespec to be used for the object code
file generation. If the file extension is
omitted, 11 /CMD 11 will be used (see -CI).

filespec2 is the filespec to be used for the cross ref-

Switches:

-CI

-IM

-LP

-NC

erence data file. If the file extension is
omitted, 11 /REF 11 will be used.

used to generate a Core-Image object file.

used to assemble the object code Into Memory.

used to generate a Listing to the Printer.

used to suppress the listing of conditional
blocks evaluated to be logically FALSE.

-NE used to suppress the listing expansion of data
declaration pseudo-OPs.

-NH used to suppress writing the header record to
the object code file.

-NL used to suppress the listing pass.

-NM used to suppress listing MACRO expansions.

-NO a dummy switch useful as a default switch in
JCL execution of EDAS.

-SL used to suppress local label listing

-WE used to pause the assembly listing and Wait if
an Error occurred.

Parameters continued next page
-==--=-------------------

COMMANDS - ASSEMBLE
7 - 3

-WO

-WS

-XR

Editor Assembler Commands

used to assemble With Object code generation.

used to generate a sorted symbol table listing
during the assembly process.

used to generate a cross reference data file
for subsequent processing by XREF/CMD.

The <A>ssemble command can be used to generate object code into either
an executable object code file (/CMD) or a binary core-image object code file
(/CIM). Your program can also be assembled directly into the unoccupied
memory region when the memory locations to be occupied by your program are
not in conflict with storage areas of the assembler, your resident source
code, the MACRO storage area, or the symbol table.

The source text to be assembled can exist either in memory only, or a
combination of memory and disk files. The in-memory source is considered to
be in the "text-buffer". When your source program is too 1 arge to be
contained solely in the text buffer, it needs to be segmented into a
combination of a memory segment and one or more disk file segments. The disk
file segments are accessed during the assembly process by use of the "*GET
filespec 11 assembler directive (detailed instructions concerning the use of
*GET, are contained in the chapter entitled "ASSEMBLER DIRECTIVES").

The following paragraphs describe the command line entries and switch
options in detail. Please note that if the EDAS e<X>tend command has been
invoked, the <A>ssemble command will be inoperative.

Fil esp eel

The first filespec on the command line, identified as "filespecl", is
the -fi lespec to be used for the object code file. Its entry is entirely
optional. When an object code filespec is entered, its entry will
automatically invoke the generation of the object code to the disk file.
Another method can also be employed to invoke object code generation to a
disk file by means of the 11 -WO 11 switch (see below). If your filespec entry
omits the file extension, the default of 11 /CMD" will be used. This default is
changed to 11 /CIM 11 if the 11 -CI" switch is specified. It is recommended that
you let the assembler assign the file extension, automatically. It will help
to keep your directories orderly, and there will be less danger of
overwriting a source file with the object code file.

Filespec2

The second f i l espec on the command 1 i ne, noted as II f i l espec2 11
,

identifies the filespec to be used when writing the cross-reference data. The

COMMANDS - ASSEMBLE
7 - 4

Editor Assembler Commands

cross-reference data generation is optional - it is required in order to run
the XREF/CMD program. EDAS will assign a default file extension of 11 /REF 11 if
you omit the extension from your filespec. As XREF/CMD will also use this
extension when accepting the file specification, it is suggested that you let
EDAS assign it~ You can also invoke generation of cross-reference data by
using the 11 -XR" switch (see below). EDAS requires the entry of the comma to
recognize the cross-reference filespec as "filespec2". Therefore, if you want
the cross-reference data file but not the object deck file, then either start
the command line with the comma separator or use the XR switch without
entering the filepec with the command line.

Switch -CI

The 11 -CI II switch is used to generate a "core-image" object code file.
Executable command files in LOOS are constructed with address information
that the system loader uses when loading and executing your command file.
Also, a header record is usually found in a load module object code file.
There are times when you would prefer an object code file without this "load"
and 11 comment 11 data. For example, say you want to burn a Programmable Read
Only Memory (PROM) from a file. A core-image file is needed. When the 11 -CI"
switch is specified, a number of changes take place in EDAS. First, the
object code file default extension is changed to 11 /CIM 11 (note: you must sti 11
enter the filespec or the switch 11 -W0 11 to invoke object code generation).
Next, the header record and the transfer address record are suppressed. Any
COM pseudo-OP statement is, likewise, suppressed. A core-image file needs to
contain contiguous address sequential code. Since EDAS reserves only storage
locations when assembling the DS/DEFS pseudo-OPs, the OS instruction would
cause your object code file to be non-contiguous. Invoking the 11 -CI II wi 11
automatically convert all 11 DS 11 statements to their corresponding 11 DC 11

statements with a zero value for operand2.

Switch -IM

This switch will invoke object code generation; however, instead of the
code being written to a file, it is placed into memory starting at the
address specified as the operand of the 11 0RG 11 pseudo-OP. The 11 -IM 11 switch
wi 11 override the entry of the 11 -W0 11 switch or entry of "fi lespecl". That is,
if both 11 -IM" and 11 -W0 11 (or filespecl) are entered, assembly into memory wi 11
occur and assembly to disk wi 11 NOT take pl ace.

Your program will not be permitted to overwrite any region below the end
of the text buffer (or macro storage area if macros are being used) nor will
it be permitted to overwrite the symbol table stored in high memory. The
error message,

Memory overlay aborted

will be displayed if your assembled program will violate these restrictions.
The assembly will be immediately stopped and EDAS will return to the command
ready prompto Upon successful completion of the assembly to memory, the

COMMANDS - ASSEMBLE
7 - 5

Editor Assembler Commands

mess age,

Memory region loaded
XXXX is the transfer address

will be displayed. This does not mean that your program assembled without
error - only that the object code generated did not interfere with the text
buffer or tables created during the assembly process. The 11 XXXX 11 field in the
second message will contain the transfer address of the program. It will be
listed in hexadecimal.

Switch -LP

The 11 -LP 11 switch is used to send the assembler listing, error messages
occurring during the assembly of your source code, and the symbol table
listing (if specified by means of the 11 -WS 11 switch) to a line printer. EDAS
assembler listings print 56 lines per page and send a form feed at the
conclusion of the 56 lines. If you are generating a listing output and a
properly paged display is desired, it is suggested that you set your paper to
begin printing at the sixth line from the top of the page (which assumes
paging parameters set at 56 print lines and 66 lines page length - the
default). This will provide five blank lines for a top margin, and five blank
lines for a bottom margin.

If you are using other than 11 11 form paper, use the EDAS command 11 <1> 11

to alter the paging parameters to suit the specifications of your printer.

Switch -NC

Conditional assembly (see the chapter on ASSEMBLER PSEUDO-OPS) can
greatly ease the maintenance of programs designed to work with multiple
configurations of hardware. However, it is unnecessary to 11 see'8 the source
statements within conditional blocks that are logically "false". This 11 -NC"
switch is provided to have No "false" Conditionals appear in your listings.
If a conditional is suppressed, neither the 11 IF 11 statement nor the 11 ENDIF 11

statement of the 11 false 11 block will be listed.

Switch -NE

Various data declaration pseudo-OPs create a structured format for the
listing of code generated after the first byte of the statement. These are
the DB/DEFB, DM/DEFM, DW/DEFW, and the DC pseudo-OP statements. If you want
to inhibit the expansion from the listing only (the code will still be
expanded for assembly of object code), then specify the No Expansion, 11 -NE 11

,

switch.

COMMANDS - ASSEMBLE
7 - 6

Editor Assembler Commands

Switch -NH

Object code files usually start off with a header record of X1 05 06 xx
xx xx xx xx xx'. The x's would be replaced with the first six characters of
the object code filename (buffered with spaces). EDAS automatically generates
this record when writing the object code file. The DOS loader has no problem
with this record. If you would like your object code files to contain this
record, then do absolutely nothing. If you do not want to have this header
record generated, then specify the No Header, 11 -NH 11

, switch.

Switch -NL

The second phase of the assembly process generates the assembler
listing. That is the only purpose it serves. If you do not want to see a
listing, then you may enter the No Listing, 11 -NL 11

, switch. This will
completely suppress phase two and shift the assembler to phase three (if
object code generation had been specified. If you are interested in listing
statements containing errors, then you must not suppress the second phase.
Note that only the lines containing assembly errors can be listed by
specifying the "*LIST OFF" assembler directive. See the chapter on ASSEMBLER
DIRECTIVES" for further details.

The cross-reference data file is written during phase two. In order to
guarantee that the second phase is available, a cross-reference specification
wi 11 automatically override any entry of the 11 -NL II switch. This could be
useful during a job stream assembly (from Job Control Language) where
selected assemblies need the cross-reference data. Thus, your JCL could
specify 11 -NL II for every assembly; whenever the XR option was invoked, phase
two would not be suppressed.

Switch -NM

You have read about the powerful uses made of macros in the MACRO
PROCESSOR chapter. By now, you may have realized that the macro model code is
repeated whenever you invoke the macro. Once you become familiar with what
the macro does, you really don't need to see its expansion in your listings
every time the macro is invoked. Switch 11 -NM 11 has been provided to inhibit
the listing of such expansions. If you specify No Macro expansions, only the
statements invoking the macros will be listed - the listing of the expansions
will be inhibited. In the case of a nested macro invocation, only the highest
level macro call will be listed.

Switch -NO

Previous versions of EDAS, and other assemblers (are there any other?)
have used a switch designated 11 -NO 11

• Its use was to inhibit the generation of
object code (No Object) when the assembler automatically generated the object
code. Since EDAS does NOT generate object code unless you tell it to do so

COMMANDS - ASSEMBLE
7 - 7

Editor Assembler Commands

(by 11 filespecl 11
, switch 11 -WO 11

, or switch 11 -IM 11
), the 11 -NO 11 switch is

unneeded. There are those "old dogs" that cannot learn new tricks. Therefore,
switch 11 -NO 11 has been included just in case you have the habit of entering,
-NO. However, it does absolutely NOTHING!

An alternate
from Job Control
RUNNING EDAS.

Switch -SL

use can be made of
Language. This was

the 11 -NO 11 switch
addressed in the

when operating EDAS
chapter entitled,

If you specify 11 -SL 11
, then any label starting with a dollar sign, 11 $ 11

,

will be suppressed from the symbol table listing and from any cross-reference
data file. Therefore, use of the 11 $ 11 as the first character of local labels
and specifying 11 -SL" will result in keeping your symbol table listings
uncluttered with local labels - especially true with the LC compiler.

Switch -WE

In a long assembly, you may want the assembler to pause the listing if
it detects an assembly error (you' re bound to get some of them). The Wait on
Error switch, 11 -WE", is available for that purpose. If specified, each time
the assembler comes to an error during phase two, it will pause the listing.
Any character entered from the keyboard will continue the assembly and
listing. If you choose to enter the character 11 C" or 11 c11

, then the phase two
process will "c"ontinue without further interruption - even though additional
errors may be detected. The listing may also be paused at any time by
depressing the <PAUSE> key, momentarily.

Switch -WO

As noted in a preceding paragraph, object code generation is specified
when 11 filespecl 11 is entered. Assembled object code is also generated to disk
if the With Object switch, 11 -WO" is specified. If 11 filespecl 11 has not been
entered, the prompt message:

Obj filespec?

will be displayed. Enter the object code filespec that you want to use to
save the assembled object code command file at this time. If you do not enter
a file extension, the default 11 /CMD 11 will be assummed. EDAS will open the
file if it is an existing file and display the message, Replaced, or create
the file if it is non-existant and display the message, New file.

If you enter 11 filespecl 11
, it is not necessary to enter the 11 -WO" switch

as entering the object code fi lespec will activate the 11 -WO 11 switch. If the
switch, 11 -IM 11

, is specified denoting an in-memory assembly, the 11 -WO 11 switch
will be ignored.

COMMANDS - ASSEMBLE
7 - 8

Editor Assembler Commands

Switch -WS

A complete symbol table cross-reference listing is available via the
11 -XR II switch and subsequent processing by the XREF /CMD program. Such a
separate process is needed in order to be able to handle cross referencing of
statements fetched from a *GET or *SEARCH file. An abbreviated printout that
contains only a sorted listing of symbols and their value is available at
assembly time by invoking the With Symbol switch, 11 -WS 11

• The symbol table
listing would normally be displayed on the video display. If the 11 -LP 11 switch
was specified, the listing would be directed to the Line Printer.

Switch -XR

This is the switch option to use if you want to generate a complete
symbolic cross reference listing. Switch 11 -XR 11 will invoke the generation of
a reference data file used by the XREF/CMD utility (see the chapter on CROSS
REFERENCE UTILITY). The reference data file is generated during the listing
pass (phase two). If the XREF filespec is entered with the command line, this
switch is assumed to have been entered. If the XREF filespec is not entered
with the command line, the filespec of the reference file will be prompted
for with the query,

XREF Filespec?

Respond with the filespec that you want to use to store the reference data.
If you do not enter a file extension, the def au 1 t 11 /REF II wi 11 be assumed.
EDAS will open the file if it is an existing file and display the message,

Rep 1 aced

or create the file if if it is non-existant and display the message,

New file

Error tot a 1 s

At the conclusion of phase three which generates object code, a listing
of the total number of errors will appear. This error total will be displayed
after the conclusion of phase two if object code is not generated. If you
need to get a quick idea whether or not your source code contains errors,
pl ace an "*LIST OFF" pseudo-OP at the beginning of your code and omit any
object code generation - but do not specify 11 -NL 11

• Only lines containing
errors will be listed. You could also specify switch 11 -WE 11 to pause when an
error occurs [Note: If you specify -NL and do not generate object code, the
"Error totals" will be incorrect (the number of forward references plus any
other errors will be displayed)].

COMMANDS - ASSEMBLE
7 - 9

Editor Assembler Commands

RANCH
========

The ranch command is used to exit EOAS. Since the ranch command
permits an address as an optional parameter, you can use it to jump to any
address (the entry to an in-memory assembled program, for instance). The
syntax of ranch is:

B { address}

address is the branch address entered in hexadecimal.

This command is used to exit the Editor Assembler or optionally branch
to any user designated address. If a branch address is omitted, a return to
the DOS Ready command mode is performed. If a branch address is provided, the
top of the stack wi 11 contain a re-entry address to EDAS. This can benefit
the testing of a program assembled into memory. A simple "RET" instruction in
your program will return control to EDAS (provided your program maintained
stack integrity and did not crash).

Examples of the ranch command:

B

11 8 11 by itself will cause an exit from EDAS and return to DOS

B 9000

This command will cause an exit from EOAS and branch to your program
at X1 9(J00' (it is hoped that your program is there).

B 5806 (Model I/III) or B 3706 (Model II) or B3606 (LOOS 6.x)

B 3(A

This will invoke a jump to the warmer-start vector which
re-initializes EDAS and clears the text buffer.

This branch will cause EDAS to enter DEBUG (Model I/III or LOOS 6.x
only). The Program Counter as displayed by DEBUG can be used as the
return address to EDAS. Optionally, you can "Go" to X'5803' (Model
I/III) or X13603 1 (LOOS 6.x) or X137(A3' (Model II).

COMMANDS - BRANCH
7 - 10

Editor Assembler Commands

<C>HANGE
========

The <C>hange command performs a global modification of a string of
characters. Its syntax is:

===

C /stringl/string2{/nl,n2}

stringl

string2

nl

n2

I

is the current string to change.

is the replacement string for stringl.

is the line number of the line preceding the
first change (FIND always starts at line+l).

is the line number of the last line to change.

represents a string separator character. It
can be any character except a digit <0-9>.

A string of characters can be changed throughout the text buffer by this
one easy command. The global <C>hange command will change the appearances of
11 stringl 11 to the sequence 11 string2 11

• Because <C>hange uses the <F>ind command
to locate strings and the <F>ind command always starts searching at "current
line+ 1 11

, no changes can be performed on the first line of the text buffer -
at least not with the <C>hange command. Also, only the first appearance of
11 stringl" in each line that 11 stringl 11 appears will be altered.

The first non-blank character following the 11 C11 becomes the string
delimiter (the slash character is shown above; any character except a digit
<0-9> is permitted). Null strings are not permitted (i.e. the string must
contain at least one character).

There is no requirement for II stri ng2 11 to be the same length as
11 stringl 11

• It can be of lesser, equal, or greater length; however, no string
can exceed 16 characters in length. If a change would result in a line
exceeding the maximum line length (which is 128), the change will not be
performed on that line and the message,

Field overflow

will be issued. The search for 11 stringl 11 continues for the remaining lines.

A line which contains 11 stringl 11 will be displayed as it exists both
before and after the change. The <SHIFT-@> key may be used to pause the
display. If you depress the <BREAK> key, it will stop further changing.

COMMANDS - CHANGE
7 - 11

Editor Assembler Commands

The entry of 11 nl 11 and 11 n2 11 is optional. If 11 nl 11 is entered, then 11 n2 11

must be entered. If neither "nl" nor 11 n2" is entered, then 11 nl 11 is assumed to
be the beginning, of the text buffer (# or t) and 11 n2" is assumed to be the
end of the text buffer(* orb). Either 11 nl 11 or 11 n2 11 can be entered as the
current line indicator (.). You can enter 11 nl 11 as (# or t) to indicate the
beginning or top of the text buffer while 11 n2 11 can be entered as (*orb) to
indicate the bottom of the text buffer. One additional restriction is that if
you enter 11 n2 11 as 11 b 11 or 11* 11

, then no change will be made on the last line of
the text.

When EDAS is set to the "lower-case converted" mode (see the information
concerning the 11 <S>witch-case 11 command), both "stringl" and 11 string2 11 will be
converted to upper case characters prior to the search and replacement. If
you need to change lower case characters as well, then you must switch EDAS
to the "lower-case permitted 11 mode prior to issuing the <C>hange command.

The 11 tab 11 character is a perfectly acceptable character to be used
within 11 stringl 11 or "string2". This may be useful if you want to convert a
contiguous sequence of spaces to a single tab.

Examples of the <C>hange command:

C /MODIFY/ AL TERI

This command wi 11 change a 11 appearances of the string "MOD I FY II to
the st r i n g II ALT ER 11

•

C .DEFB.DB.90,1000

This command wi 11 change a 11 appearances of "DEFB II to "DB II from line
100 to line 1000 (assuming inc=10).

C /DEFM/DB/90,b

This <C>hange command will translate all appearances of 11 DEFM81 to
11 DB 11 from line 100 to the end of the text (assuming inc=10).

COMMANDS - CHANGE
7 - 12

Editor Assembler Conrnands

<C>OPY
========

The <C>opy command can be used to duplicate a line or block of lines
from one point in the text buffer into another point in the text buffer. Its
syntax is:

C linel, line2, line3

linel

l ine2

line3

is the first line of the block to duplicate.

is the last line of the block to duplicate.

is the line number of the line that the copied
block should follow.

This command is useful to duplicate a line or block of lines. Note that
the command letter is the same as the <C>hange command. EDAS will interpret
the <C> as a <C>opy command if the first non-blank character following the
<C> is a digit <0-9> At the conclusion of the <C>opy operation, the entire
text wi 11 be renumbered using the increment currently in effect. A few
restrictions are in order. A <C>opy cannot be performed if 11 line3 11 is
interior to the block 11 linel 11

-
11 1ine2 11

•
11 Linel 11 must either precede "line2" or

be equal to 11 line2 11 (where 11 linel 11 is equal to 11 1ine2 11
, the block to be

duplicated consists of the single line, 11 linel 11
).

If insufficient space is rema1n1ng in the text buffer to duplicate the
entire block, none of the block of lines will be copied and the message,

Text buffer fu 11

will be displayed. The parameters (line numbers) must specify specific lines
in the text buffer. If any of the line numbers cannot be found, the copy will
not be performed and the message,

No such line

will be displayed. The <C>opy command requires all three parameters entered
and separated with the comma(,). If this syntax is not met, the message,

Bad parameters

will be displayed.

COMMANDS - COPY
7 - 13

Editor Assembler Commands

Examples of the <C>opy command:

C 100,200,1000

This command will duplicate the block of lines numbered from 100 to
200 inclusive to also appear after line number 1000.

C t,50,50

This command will copy the block of lines from the top of the text
through line number 50 so that it will also follow line number 50.

c 580,700,b

This <C>opy command will duplicate the block of lines numbered from
580 to 700 so that they also appear after the current bottom of text.

COMMANDS - COPY
7 - 14

Editor Assembler Corrmands

<D>ELETE
========

The <D>elete command is used to remove a line or block of lines from the
text buffer. Its syntax is:

D {linel{, line2}}

linel

l i ne2

is the first line to delete.

is the last line to delete.

This command is used to delete the line or lines specified from the
source text buffer. The characters 11 # 11 or 11 t 11 are used to indicate the
beginning of the text buffer when used for 11 linel 11

• The characters 11* 11 or 11 b11

are used to indicate the bottom of the text buffer when used for 11 line2 11
• If

the line parameters are omitted, the current line, 11
•

11 is assummed.

To aid in you in observing what becomes the new current line after a
line delete operation, the new current line will be displayed.

Examples of line deletes:

D 100,500

This <D>elete will remove from the text buffer, lines 100 through 500
(inclusive).

D T,B or d t,b or d #,*

This command will remove the entire source text from the text buffer.
A ranch to the "warmer" start address also wi 11 delete the entire
text.

D or d

D 105

This <D>elete command will remove the current source text line. A
period, 11

•
11

, may also be used to indicate the current line (i.e.
II D. II).

This command will delete the the single line numbered 105.

COMMANDS - DELETE
7 - 15

Editor Assembler Commands

<E>DIT
======

The <E>dit command is used to invoke the line editor for purposes of
making alterations to a single text line. Its syntax is:

E {line}

line is the number of the line to edit.

This command permits the user to edit or modify any source text line.
The syntax and function of all edit subcommands are identical to those
implemented in the BASIC editor. If the optional line number is not entered,
the current line, 11

•
11

, will be edited.

When using the line editor, it will always operate in the "lower-case
permitted" mode. Therefore, you will need to pay attention to use of the
<SHIFT> key when editing upper-case characters. However, once you complete
your editing and exit the line editor, your line will be properly converted
to upper-case as required if EDAS is in the "lower-case converted" mode.

COMMANDS - EDIT
7 - 16

Editor Assembler Conmands

The following table of Edit Subcommands are provided for a reminder of
the common edit operations:

A

nC

no

E

H

I

nKx

L

Q

nSx

<-­

ENTER

ESCAPE

SPACE

Abort and restart the line edit.

Change n characters.

Delete n characters.

End editing and enter the changes.

Delete (hack) the remainder of the line and
insert the following string. A line hacked to
zero length will be automatically deleted when
exiting the line editor.

Insert string.

Kill all characters up to the nth occurrence
of x.

Print the rest of the line and go back to the
starting position of the line.

Quit and ignore all editing.

Search for the nth occurrence of x.

Move edit pointer back one space.

Enter the line in its presently edited form
and exit the edit mode.

Escape from any edit mode subcommand. The
<SHIFT-UP-ARROW> key is the escape key on
the Model I and Model III.

Display the next character of the current
line being edited.

COMMANDS - EDIT
7 - 17

Editor Assembler Commands

<F>IND
======

The <F>ind command is used to locate the next occurrence of a string of
characters within a line. Its syntax is:

F {string}

string is the character sequence to find.

The text buffer is searched starting at the current 11 line+l 11 for the
first occurrence of "string". "String" can be from <1 to 16> characters in
length. If more than 16 are entered, then any characters beyond the 16th will
be ignored. If no string is specified, the search is the same as that of the
last <F>ind command in which a string was specified (provided a global
<C>hange command was not performed after the last <F>ind command). If the
search string is found, the line containing it is displayed and the current
line pointer, 11

•
11

, is updated to point to the displayed line. If the string
is not found, the message,

String not found

is displayed and the current line pointer, 11
•

11
, remains unchanged. A 11 P# 11 or

11 Pt 11 command can be used to position the line pointer to the top of the text
buffer prior to use of the <F>ind command. Spaces and tabs are considered to
be part of "string" and are thus acceptable for 11 finding".

Examples of the <F>ind command:

FWRITEWORD

F

This <F>ind command will locate the next appearance of the string
II WR ITEWORD II.

Assuming a <C>hange command has not been performed, this command will
find the next appearance of "WR ITEWORD 11

•

COMMANDS - FIND
7 - 18

Editor Assembler Commands

<H>ARDCOPY

This command lists a line or block of lines on a line printer to provide
a II hard copy". I ts syntax is:

H {linel{, line2}}

linel is the line number of the first line to print.

line2 is the line number of the last line to print.

===

This command will print a line or a group of lines to a line printer.
EDAS will print 56 lines to a page (see the discussion of the <1> command).
If a properly paged display is desired, it is suggested that you set your
paper to begin printing at the sixth line from the top of the page.

Examples of the <H>ardcopy command:

H #,* or H t,b

This command will print the entire text buffer.

H 100,500

H.

H

This command will print lines numbered 100 through 500 inclusive.

This command will print the single line pointed to by the current
line pointer, II II

This command will print the 15 lines (Model II and LOOS 6.x print 23
lines) starting with the current line.

COMMANDS - HARDCOPY
7 - 19

Editor Assembler Connands

<I>NSERT
========

This command is used to invoke
into the text buffer. <I>nsert is
BASIC. <I>nsert' s syntax is:

the <I>nsert mode so lines can be input
somewhat similar to the 11 AUT0 11 command in

I {line#{,inc}}

1 inel

inc

is the number of the line that the insert
should fo 11 ow.

changes the current increment to 11 inc 11
•

Note: use <BREAK> or <SHIFT-CLEAR> to exit

The Insert command is used to insert or add text lines into the text
buffer. All lines of source text are entered with the use of the <I>nsert
command. After using the <I>nsert command to specify where you wish to place
new lines, the editor will generate the designated line number and allow the
inserting of that numbered text line. After entering the first text line the
editor will generate the next line number higher, as specified by your
increment selection. Incremental line numbers will continue to be generated
as long as there is room between lines or room left in the text buffer.

If a desired increment is not specified, the last specified increment is
assumed. Period, 11

•
11

, may be used for 11 line# 11 to indicate the current line
or if 11 line# 11 is omitted, the current line will be assumed.

The <BREAK> key will allow you to leave the insert mode at any time. The
<CLEAR> key also performs a functional BREAK. If you have entered the <BREAK>
before depressing <ENTER> to complete the input of a line, that line will not
get entered into the text buffer.

Examples of the <I>nsert command:

I 300,5

IB

This command will begin the text insertion to follow line numbered
3~0 and also change the increment to 5.

This command will append new text to the end of the text buffer. It
is identical to performing a 11 Pb 11 followed by an 11 I 11

•

COMMANDS - INSERT
7 - 20

Editor Assembler Commands

<K>ILL
======

This command can be used to erase a file from a disk. It will function
identically to the DOS KILL (or REMOVE) command. Its syntax is:

K filespec

filespec is the filespec of the file to be erased.

Note: The file extension currently in effect for 11 source 11

files will be used as a default extension.

This command is used to delete a file that is not needed. Coupled with
use of the QUERY command, file maintenance can be implemented from within the
Editor Assembler environment. This is especially useful when a <W>rite
command results in a **DISK FULL** DOS error and you have to find a diskette
with sufficient free space.

In order to guard against inadvertant use of the <K>il l command, a
filespec must be entered. If no extension is entered, the extension currently
in effect for source files (usually 11 ASM 11 unless over-ridden by LC or EXT=
parameters) will be assumed. If you enter the <K>ill command without a
filespec, the message:

Bad parameter(s)

will be displayed.

Note: The <K>ill command is not available on Model II versions of EDAS.
Therefore, one must use the <Q>uery KILL DOS command on the Model II.

Examples of the <K>ill command:

K OLDPROG/ASM:2

This command will erase the file, OLDPROG/ASM, from drive 2.

K TEST:0

This <K>ill command will erase 11 TEST/ASM 11 from drive 0.

COMMANDS - KILL
7 - 21

Editor Assembler Commands

<L>OAD
======

This command is used to load a source file into the text buffer. Its
syntax is:

L {filespec}

filespec is the filespec of the file to be loaded.

The <L>oad command will read the file denoted by the 11 filesP.ec 11 into the
text buffer. The text file will be concatenated to any text already in the
text buffer. The file specification is composed of a FILENAME, optional
EXTension, optional PASSWORD, and optional DRIVE reference as in:

FILENAME/EXT.PASSWORD:D

If you do not enter the II fi l espec 11
, EDAS wi 11 prompt you for the

filespec. If you omit the file extension (EXT), a default extension of 11 ASM 11

will be used thus saving keyboard input and at the same time providing for a
standard file naming convention. If the 11 LC 11 parameter was specified in the
EDAS command line, then "CCC" will be used for the default. The EDAS
parameter 11 EXT=ext 11 can be used to override the assigned default extension to
that of 11 ext 11 (see the chapter on RUNNING EDAS).

The <L>oad command wi 11 automatically handle a source file that is
line-numbered and headered (EDAS Version III format), line-numbered and
un-headered (EDTASM Series I format), or un-numbered and un-headered (EDAS
format, text editor prepared files, or certain M-80 files). Model II source
files created with EDAS 4.0 must be converted using the CONV40 utility. If
the file being read is not line-numbered, EDAS will automatically number it
as it loads. A line number counter is kept internally that advances by the
current increment for each un-numbered line read. Thus, concatenation of
source text via multiple loads of un-numbered source files will produce a
sequentially numbered in-memory text. The line number counter is reset to its
initial starting value only by a warm-start or depression of the <CLEAR>
command function.

A line-numbered file is interpreted as one in which the first five
characters of a line have the high-order bit (bit 7) set. The 5-character
line number is also followed by a terminating character (usually a space but
could be a tab with bit 7 set). A headered file is interpreted as one in
which the first character of the file is an X1 03 1

•

"ASCII II files prepared by a word processor program (i.e. SCRIP SIT) are
loadable by EDAS; however, they must be pure ASCII and must have line lengths
not exceeding 128. The only requirement is that there must be an end-of-file
character as the last character of the text (which would follow a carriage

COMMANDS - LOAD
7 - 22

Editor Assembler Commands

return). The end-of-character can be either an X1 lA 1 or a null, X'00'. EDAS
can only convert lower case to upper case during <I>nput or <E>diting so if
you use an external word processor program, keep the Z-80 code in upper case.

Examples of <L>oad commands:

L myprog

This command will search for a file named 11 MYPROG/ASM 11 (assuming a
default extension of II ASM 11

) and load it in to the text buff er.

L theprog: 1

Dt,b

This command wi 11 load the file named 11 THEPROG/ASM 11 from drive 1 into
the text buffer.

L newprog: 2

This sequence of commands will first clear the text buffer then load
the file named 11 NEWPROG/ASM 11 from drive 2.

COMMANDS - LOAD
7 - 23

Editor Assembler Commands

<M>OVE
======

This command is used to <M>ove a line or block of lines from one text
buffer location to another. Its syntax is:

M linel, line2, line3

line! is the 1 i ne number of the first line to move.

1 ine2 is the 1 i ne number of the 1 as t 1 i n e to move .

line3 is the number of the line that the block
should fo 11 OW after the move.

This command is used to move a block of lines from one location in the
text buffer to another. A large quantity of text lines can be moved to a
different position in one easy operation. In the command syntax, "linel" and
11 l i n e 2 11 are the beg i n n i n g and end i n g l i n e nu mb er s of the text b l o ck to be
moved. 11 L inel" and "line2" are permitted to reference the same line number if
only one line is to be moved. "L ine3 11 is the line number of the line that the
text block will follow after the move. The line number references must be
offset by commas 11

,
11

• Your line number parameters must specify existing lines
in the text buffer. If any of the entered line numbers are non-existant, the
mess age,

No such line

will be displayed.

11 Line3 11 is not permitted to equal 11 linel" or 11 line2 11 as that would
represent an illogical move operation. "L ine3 11 is not permitted to be a line
interior to the range "linel" through "line2 11 as that would also be an
illogical operation. The message,

Bad parameter(s)

will be issued if your input violates any of these conditions.

The block of text to be moved is stored temporarily in the spare text
region. If this region is not large enough to store the block, the message,

Text buffer full

will be issued. Try moving the block in smaller segments.

Upon completion of the move, all lines
renumbered starting from 100 and incremented

COMMANDS ... MOVE
7 - 24

in the text buffer will be
according to the line increment

Editor Assembler Conanands

currently in effect. Renumbering is absolutely essential to perform proper
operation of Editor Assembler commands and so it is done automatically.

Examples of <M>ove commands:

M 500,900,1510

You desire to move the block of text starting at line 500 and ending
at line 900 to follow line 1510. This command will perform the
desired operation.

COMMANDS - MOVE
7 - 25

Editor Assembler Commands

RE<N>UMBER

This command is used to re<N>umber the lines of text in the text buffer.
Its syntax is:

N {line{,inc}}

line is the new first line number.

inc is the new increment.

The <N> command is used to renumber the lines in the text buffer. The
first line in the buffer is assigned the number specified as "line". If
11 line 11 is not specified, it defaults to 0flH0{lL The remaining lines in the
buffer are renumbered according to the increment 11 inc 11 or the previous
increment in a re<N>umber, <R>eplace, or <I>nsert command if the increment
was not specified. The current line pointer, 11

•
11

, points to the same line as
it did before the re<N>umber command was used, but the actual number of this
line may be changed.

Examples of line re<N>umbering:

N

N5

Nl0,5

This command wi 11 renumber the text to start with 1 ine number 100.
The previous increment in effect will be used.

This re<N>umber command will renumber the text to start with line
number 5. It also uses the previous increment.

This command will renumber the text to start with line number 10. It
changes the line increment to a value of 5.

COMMANDS - RENUMBER
7 - 26

Editor Assembler Commands

<P>RINT
=======

The <P>rint command is used to display a line or block of lines to the
video display. Its syntax is:

P {linel{, line2}}

linel is the number of the first line to display.

line2 is the number of the last line to display.

The <P>rint command will display a line or
monitor screen. The current line pointer, 11

•
11

,

a group of lines on the
is updated to point to the

last line displayed.

If 11 linel 11 is entered without entering "line2 11
, then only 11 linel 11 will

be displayed. If neither 11 linel 11 nor 11 line2 11 are entered, then the current
line plus 14 additional lines (total of 15) will be displayed (23 total lines
will be displayed on the Model II).

Examples of <P>rinting lines:

P #,* or P t,b

This command will display all lines in the text buffer. You may use
the <PAUSE> function to temporarily halt the display from scrolling.

P 100,500

This command displays lines 100 through 500 inclusive.

p •

p

This command will display the the line pointed to by the current line
pointer. Only a single line will be displayed.

This command displays 15 lines (23 on the Model II) starting with the
current line. The <P>rint command operates in a screen scroll mode.

COMMANDS - PRINT
7 - 27

Editor Assembler Commands

<Q>UERY
=======

On the Model I or III, this command can be used to obtain a directory of
files stored on a disk. Under LOOS 6.x or on the Model II, <Q>uery is used to
execute a DOS command. Its syntax is:

Model I/III
Q{d{/ext}}

d is the drive (0-7) for which a directory
display is desired.

/ext is an optional 11 part-spec 11 file extension used
to display only files matching the "ext".

LOOS 6.x or Model II
Q DOS-command

DOS-command can be any DOS command except COPY or BACKUP

With Model I or III, this command is used to display a directory from
the designated drive. If a drive number is not entered, drive 0 will be
assurmied. The 11 part-spec 11 optional entry can be useful to isolate the
directory display to select only those files matching a particular class. For
example, if you only want to display the names of 11 /ASM" files, the part-spec
extension should be used.

Under LOOS 6.x or on the Model II, <Q>uery is used to interface with
the DOS while in the evironment of the Editor Assembler. Any DOS command can
be accessed. It is recommended that you not attempt to access the "COPY II or
"BACKUP" commands due to the possibility of overwriting the Editor Assembler.

IMPORTANT: NEVER DEPRESS <BREAK> ON THE MODEL II DURING A DOS
COMMAND EXECUTION. TO BREAK ANY DOS COMMAND, USE THE <ESCAPE> KEY.

Examples of <Q>uery commands:

Q DIR

Ql/CCC

This LOOS 6.x or Model II <Q>uery command will list the diskette
directory to the display device.

This Model I or Model III <Q>uery command will display the names of
all LC source files stored on drive 1.

COMMANDS - QUERY
7 - 28

Editor Assembler Conmands

<R>EPLACE

This command can be used to replace a specified text line and
automatically enter <I>nsert mode. Its syntax is:

R {line{,inc}}

line is the number of the line to replace.

inc is the new increment to be used.

The <R>eplace command only replaces the one line specified and then
enters <I>nsert mode. If 11 line 11 is omitted, then the current line is assumed.
If 11 line 11 exists, it is deleted and then <I>nsert mode is entered starting
with that line number. If 11 line 11 doesn't exist, <I>nsert mode is entered just
as if the <I>nsert command were invoked. If 11 inc 11 is not specified, the last
increment specified by an <I>nsert, <R>eplace, or re<N>umber command is used.
The current line pointer, 11

•
11

, is always updated to the new current line.

If during subsequent INPUT of lines, the error message:

No more room

is issued, it means that a line numbered "current"+ 11 inc 11 already exists. It
is suggested that you renumber the lines and continue your insertion after
ascertaining the new line number assigned to the 11 current 11 line.

Examples of <R>eplace commands:

R

R 100,10

R 100

This command will replace the current line.

This <R>eplace command will start replacing lines beginning at line
numbered 100 and enter <I>nsert mode with an increment of 10.

This command will start replacing at line numbered 100 using the last
specified increment.

COMMANDS - REPLACE
7 - 29

Editor Assembler Cormands

<S>WITCH CASE CONVERSION MODE

This command is used to toggle the "case conversion mode 11 of EDAS. It
will either permit the acceptance of both upper case and lower case, or
invoke the automatic conversion of lower case to upper case where required.
I ts syn tax is:

s
There are no parameters or options.

===----------=---------

Command <S>witch will toggle the switch-case conversion of lower case to
upper case. If your computer supports the display of lower case, this feature
will be of great benefit. Two modes are available:

1. Lower case accepted: This mode permits entry of either lower case or
upper case. Your input is preserved in whatever case it is entered. EDAS is
suitable as a text editor in this mode. This is the mode used when entering
LC C-language source text.

2. Lower case converted: This mode permits entry in either upper case or
lower case. All lines are converted to upper case during <I>nput mode or when
exiting the <E>dit mode. This mode should be used to input assembler source
text. While in the lower case converted mode, the following conversion
behavior is exhibited:

Character strings within single
entered in lower case. This will
are kept intact.

quotes are kept in lower case if
ensure that your string declarations

Characters entered following a semi-colon are kept in lower case if
entered in lower case. This permits the entry of comments in lower
case which makes your source text much more "readable".

On entry to EDAS, the "lower case converted" mode is activated. Each
entry of an 11 S11 command will switch (toggle) the case mode and an appropriate
message will be displayed.

Lower case permitted -
Lower case converted -

for full lower case
for upper case conversion

Since the <I>nsert command mode converts to upper case, the <F>ind and
<C>hange commands utilize the <I>nsert input and will also convert to upper
case. You can <F> or <C> lower case by using the case switch toggled to
"lower case permitted".

COMMANDS - SWITCH CASE
7 - 30

Editor Assembler Convnands

<T>YPE
======

This command can be used to print a line or block of lines on a line
printer. In contrast to the <H>ard copy command, <T>ype will omit the line
numbers. Its syntax is:

T {linel{, line2}}

1 inel

1 ine2

is the number of the first line to print.

is the number of the last line to print.

The <T>ype command prints a line or block of lines onto the Line
Printer. The current line pointer, 11

•
11

, is updated to point to the last line
printed. This command is much like the <H>ard copy command, except line
numbers are not printed. Only the source text is printed. If a properly paged
display is desired, it is suggested that you set your paper to begin printing
at the sixth line from the top of the page (for additional information on
paging, see the <l> command).

Examples of <T>ype commands:

For examples of the <T>ype command,
commands function identically except
during the printing.

see the <H>ard copy command. The two
that <T>ype omits the line numbers

COMMANDS - TYPE
7 - 31

Editor Assembler Commands

MEMORY <U>SAGE

This command is used to display certain statistics concerning the memory
usage of your source text buffer. Its syntax is:

u

There are no parameters or options.

This command will display the number of bytes of text buffer in use, the
number of bytes spare and the first address available for assembly to memory
(note that if macros are being used, the macro storage area extends from the
address shown as the first address available for assembly and you will have
to experimentally choose a higher address for an "in-memory" assembly).

This command is useful to ascertain requirements for storing the text
buffer to disk. Note that a disk file, which is written in ASCII
(un-numbered), will contain two (2) bytes less per text line. The 2 bytes
represent the line number used in the storage format of text in memory versus
text in an un-numbered ASCII file.

It also is useful when assembling into memory. Since the Assembler will
not permit you to overwrite it or the text buffer, you will have to "ORG"
your program in the free text buffer area. The first available address is
output by this command (remember the note on macro storage).

An example of <U>sage output is:

30622 bytes spare
00000 bytes in use
8863H is the first free address

COMMANDS~ USAGE
7 - 32

Editor Assembler Conwnands

<V>IEW
======

This command is used to list (display) a file on the video display
device. Its syntax is:

V {filespec}

filespec is the filespec of the file to be displayed.

This command can be used to display any file without actually loading
the file into the text buffer. No attempt is made to convert non-ASCII
characters prior to displaying. Therefore, if the file is not an ASCII file,
strange characters may be displayed. Use the <V>iew command primarily to
display source files.

The output may be temporarily stopped by depressing the <PAUSE> key or
may be interrupted and cancelled by depressing the <BREAK> key.

If you do not enter the filespec with the command line, it will be
prompted for with the query:

filespec?

If you do not enter a file extension with the file specification, a
default extension of 11 ASM 11 wi 11 be used unless the 11 LC 11 parameter was
specified when entering EDAS. 11 LC 11 redefines the default specification to
11 CCC 11

• Note that the default extension could also have been changed via the
11 EXT=ext 11 parameter.

COMMANDS - VIEW
7 - 33

Editor Assembler Commands

<W>RITE
=======

The <W>rite command is used to save the contents
a disk file. Its syntax is:

of the text buffer into

W{+}{#}{$}{!hh} {filespec}

filespec

+

is the filespec to be written.

is an optional switch to write a source file
created with a header record.

is an optional switch to write a source file
with line numbers.

$ is an optional switch to write a source file
with line numbers terminated by X'89'.

!hh is an optional switch to specify a end-of-file
terminating byte of X'hh' other than X'lA'.
Use 11 !! 11 to suppress the E-0-F byte.

This command will write the text buffer to the file denoted by filespec.
If no filespec is entered, you will be prompted for it in a manner identical
to the <L>oad command. If you omit the file extension (EXT), a default
extension of "ASM" wi 11 be used thus saving keyboard input and at the same
time providing for a standard file naming convention. Remember, if you had
specified "LC" or 11 EXT=ext 11 when you entered EDAS, the default source
extension will be "CCC" or "ext" respectively.

The switches are used for compatibility in writing source files for use
with other editors such as the M-80 editor, EDIT80, earlier versions of EDAS
(3.4 and 3.5), and EDTASM. If more than one switch is used, the order is
irrelevant. Use of the switch 11+ 11 wi 11 enable creating a file with a file
header record (X'03' followed by a 6-character filename).

If the source file is to contain line numbers, then the 11 #11 switch
should be used. This will write line numbers as five ASCII digits with the
high order bit (bit-7) set. The line number is terminated with a space
character (X'20'). The switch 11 $ 11 generates a line numbered file the same as
the 11 #11 switch; however, the terminating character is written as a tab with
bit-7 set (X 189 1

). Some versions of FORTRAN require the source file to be in
this manner; thus, EDAS could be used to prepare source files for FORTRAN.

Finally, the 11 ! hh" switch can be used to specify an end-of-file byte to
be other than the standard X1 lA 1 normally used by EDAS. For instance,
specifying "!00" will change the E-0-F byte to X'00', the value used by

COMMANDS - WRITE
7 - 34

Editor Assembler Commands

SCRIPSIT. If instead of the two-character hexadecimal value, you enter a
second exclamation point as in 11 !! 11

, then no E-O-F byte will be written.
Observe caution as EDAS can only properly load a file if the E-O-F byte is an
XI lA I or an X 1 (10' .

If the file denoted by "fi lespec" is non-existant, a file wi 11 be
created and the message,

New File

wi 11 be issued. If the file denoted by "fi lespec" is an existing file, it
will be replaced by the write operation and the message,

Rep 1 aced

will be issued. YOU WILL NOT BE GIVEN AN OPPORTUNITY TO CANCEL A WRITE
REQUEST ON AN EXISTING FILE. Know what you are doing.

Examples of <W>rite commands:

W parmdirl:3

This command will write the current contents of the text buffer to
the file, PARMDIRl/ASM:3

W !(10 doparm/jcl:0

This <W>rite command will save the text buffer in the file,
DOPARM/JCL:0. An E-O-F byte of X'(10' would be used instead of X'lA'.
Thus, EDAS was used to edit a Job Control Language file.

COMMANDS - WRITE
7 - 35

Editor Assembler Conmands

E<X>TEND
========

This command can be used to increase the area of the text buffer by
eliminating the assembler. Its syntax is:

X

There are no parameters or options.

==========================-======----------=-------------------

This command can be used to extend the text buffer area by moving the
text over the Assembler portion of EDAS in memory. Approximately 8000 bytes
are gained by this extend operation. It is useful if you are editing a large
body of text or are dealing with a large assembly language source program.
Since the capability of direct assembly from disk files is a function of the
EDAS Editor Assembler, editing can be performed without the Assembler module
of the program in memory. You, of course, will have to exit and reload the
Editor Assembler for further assembling.

Another reason for the use of e<X>tend, is to handle those EDAS 3.5
files that now exceed the maximum text buffer size of EDAS version IV. It is
suggested that you keep your source files in smaller modules. The *GET
capability provides great power in handling multiple source files in an
assembly stream. You will thus find that a program made up of smaller modules
of code is perhaps easier to maintain and just as fast to assemble.

Following the entry of the <X> command, the prompt:

Are you sure?

will be displayed. This is provided as a safeguard in case you inadvertantly
enter the <X> command. You must respond <Y> in order to complete the
extension. Entry of any other character will abort the extend operation. A
response to the query with a <Y> will move the current contents of the text
buffer and reset all pointers to their proper value. Once the e<X>tend
command is invoked, both it and the <A>ssemble command will be made
inoperative.

COMMANDS - EXTEND
7 - 36

Editor Assembler Commands

<1> (ONE)

This command can be used to display or alter the current page formatting
parameters of EDAS. It is not supported under LOOS 6.x or Model II (use Q
FORMS). Its syntax is:

l{nl{,n2}}

nl

n2

is the number of lines to print per page.

is the page length in lines.

This command can be used to alter the two paging parameters used by
EDAS. One of these parameters specifies how many lines to print on a page
before issuing a form feed. The other parameter is specified in the printer
Device Control Block (DCB) and represents the maximum printing lines on a
page. EDAS initializes with 11 nl 11 set to 56 (57 on a Model III since a Model
III starts counting from 1). Thus, 56 lines will be printed before sending a
page eject. The value of the page length stored in the *PR DCB (X 14028 1 Model
I and III) is used for the 11 n2 11 value. Either value can be changed with this
command. If no parameter is entered, then the current values will be
displayed.

Examples of the <1> command:

1 46 51

1

This command will set the maximum page length to 51. The number of
printed lines until a form feed is generated will be set to 46.

This command will display the current values for lines-to-print and
lines-per-page. The display will look like:

00056 00066
00057 00067

(Mode 1 I and Mode 1 I I)
(Mode 1 II I)

(

COMMANDS - ONE
7 - 37

Editor Assembler Commands

MESSAGE TO JOB LOG 11
•

11

The dot 11
•

11 command can only be used with LOOS, to post a time-stamped
message to an active job log. There will be no visual indication of the
event. Its primary utility will be with Job Control applications of EDAS. An
example of a message post would be:

• Starting assembly of PARMDIR

SCROLL UP <UP-ARROW>

The "SCROLL UP 11 command displays the line preceding the current line and
up d ates the current l i n e poi n t er , " • 11

, to poi n t to the l i n e d i s p l ay ed • I f the
current line is the first line in the text buffer, it is displayed and period
11

•
11 remains unchanged. "SCROLL UP 11 is an immediate command and must be the

first character of a command line in order to be interpreted.

SCROLL DOWN <DOWN-ARROW>

The "SCROLL DOWN" command displays the line following the current line
and updates the current line pointer, 11

•
11

, to point to the line displayed. If
the current line is the last line in the text buffer, the last line is
displayed and period 11

•
11 remains unchanged. "SCROLL DOWN" is an immediate

command and must be the first character of a command line to be interpreted.

CLEAR SCREEN <SHIFT-CLEAR (Model I/III)> <Fl (Model II)>

The <CLEAR> key is used to perform a functional clear screen and display
of the initial entry message. The 11 CLEAR 11 function also performs a <BREAK>
operation but cannot be used to interrupt output. This function is identical
to a warm-start of EDAS and will reset automatic line numbering to its
intital value of 100.

On the Model I and Model III, the <SHIFT-CLEAR> key performs the "clear"
function. The <Fl> key is used on the Model II. Consult your DOS manual for
the appropriate key under LOOS 6.x.

COMMANDS - DISPLAY CONTROL
7 - 38

Editor Assembler Commands

PAUSE <SHIFT-@ (Model I/III)> <HOLD (Model II)>

The <PAUSE> key is used to pause the computer during a display, during
any assembly, or Editor Assembler printing. When a pause is sensed,
depression of any key except <PAUSE>, <SHIFT>, or <CONTROL> will continue the
operation paused. It is only necessary to momentarily depress the key as a
pause function will be held pending as soon as the key is pressed. On the
Model I and Model II I, the <SHIFT-@> key is used as a 11 pause 11

• The <HOLD> key
is used for this purpose on the Model II.

BREAK

The <BREAK> key is used to terminate the <I>nsert mode. It is also used
to abort an assembly in effect. It will also abort any disk I/0 operation or
display listing. A detected <BREAK> will return EDAS to the command ready
prompt, 11 >11

•

PAGE FORWARD <SHIFT RT-ARROW (Model I/III)> <F2 (Model II)>

The <SHIFT-RT-ARROW> key on the Model I and Model III is used to advance
the display by 15 lines. The <F2> key is used on the Model II to advance the
display by 23 lines. This command is similar to the <P>rint command except
that the display screen is cleared prior to displaying the 15/23 lines of
source text.

USER PATCH SPACE - ZCMD

A 50-byte patch space is available for your use. A vector pointing to
this space is located at X1 5809 1 (Model I/III), X'3609' under LOOS 6.x, or
X13709 1 (Model II). If you place a routine in this space, it can be executed
by entering a <Z> at command ready. The space currently has a RET instruction
as the first byte which is used to return from the <Z> command.

COMMANDS - DISPLAY CONTROL
7 - 39

Cross Reference Utility

X R E F
=======

The MISOSYS XREF utility is used to generate a cross reference listing
of symbols used in your source code. Its syntax is:

XREF filespec/REF {(LEN=val,PAGE=val,LINES=val,EQU,LIMIT)}

filespec

LEN

PAGE

LINES

EQU

LIMIT

is the specification of the reference data
file generated by the -XR switch of EDAS. If
the file extension is omitted, "REF II is used.

is the length of your print line (the default
v a 1 u e i s 80) •

is the maximum number of lines per page (the
default is 66 for Mod I & II, 67 for Mod III).

is the number of lines to print on a page (the
default is 56 for Mod I & II, 57 for Mod III).

is used to generate a file of EQUates instead
of the cross reference listing.

is used to limit the file of EQUates to those
symbols containing a special character.

Note: the format of 11 value 11 is PARM=ddd or PARM=X 1 hhhh 1
•

PAGE and LINES are not supported under LOOS 6.x or Model II

There are no parameter abbreviations.

The XREF/CMD utility generates a symbolic cross-reference listing which
includes a sorted list of all defined labels, the file of origin of the
definition, the line number of the definition, the value of the definition,
and the line numbers of all statements referencing the label. If "*GET" or
11 *SEARCH 11 files are used in the assembly process, XREF will even identify the
filename of the file containing the references. XREF will not identify
unresolved labels. Therefore, make sure that either all labels are resolved
during the assembly that generates the XREF data file, or you do not need the
line numbers of those unresolved references appearing in the cross reference
listing.

XREF can also be used to generate an assembler source file of EQUates of
all symbols used in the program being assembled or a subset of all symbols
used. The LIMIT parameter is used to limit the EQUates to only those symbols
having at least one special character in the symbol name.

UTILITY - XREF
8 - 1

Cross Reference Utility

XREF uses, as input, the reference data file which is optionally
generated by the -XR switch during the LISTING pass of EDAS (phase 2). XREF
cannot function without this data file. You need not enter the file
extension, /REF, as it will be assumed if omitted.

The XREF command line parameters enclosed in parentheses are entirely
optional. The may be used as follows:

LEN

This parameter controls the printed line length during the XREF listing.
If omitted, a value of 80 is assumed to deal with 80-column line printers. If
you are using a wide-carriage printer (typically 132 columns), then XREF can
use the entire print line by specifying the parameter as:

XREF (LEN=l32)

PAGE

This parameter controls the page size. A value of 66 lines per page (67
on the Model III due to its line counter starting from 1 instead of 0) is
used. If your paper is shorter or longer, you can respecify the page length
from the command line. For instance:

XREF filespec (PAGE=51,LINES=41)

will set the page length to 51 lines per page and initialize to print 41
lines.

LINES

This parameter controls the quantity of lines printed on a page before a
page eject (form feed) is generated. If omitted, a value of 56 printed lines
is used. You can respecify the quantity of lines you want printed by a
command similar to that shown for the PAGE parameter.

EQU

This parameter controls the generation of the EQUate file. If this
parameter is entered, then the cross reference listing is suppressed and a
source file of symbols equated to their value is generated. The filespec used
to write the EQUate file will be constructed using the filename and drive
specification of the 11 /REF 11 file. A file extension of 11 /EQU 11 wi 11 be used. If
this parameter is entered, then LEN, PAGE, and LINES will be ignored.

Symbols defined by the 11 DEFL 11 pseudo-OP will be maintained as DEFL's in
the EQUate file. The file will be created without a header and without line
numbers - it will be a standard EDAS Version IV file.

UTILITY - XREF
8 - 2

Cross Reference Utility

LIMIT

This parameter controls what symbols are written to the EQUate file. If
entered in addition to the "EQU" parameter, then the EQUate fi 1 e wi 11 be
limited to those symbols that contain at least one special character (a
character other than A-Z, 0-9).

Cross-Reference Listing

The listing requires two passes through the data file. This is done to
conserve memory space so that listings for extremely large programs can be
processed. If you are generating the cross reference listing, three
informative messages will be displayed prior to generating the printer
output. "Building symbols declared" will be displayed during the first pass
through the data file as XREF creates a table of information pertinent to all
symbols declared. After this table is completed, the message, "Sorting symbol
table" will be displayed. The operation being performed is self evident. A
second pass through the REF data file will be made while the message,
"Building symbols referenced" is displayed. This pass is used to create a
second table of information pertinent to all references to symbols.

The listing will contain a heading on each page. This heading is
composed of the system DATE and TIME, the TITLE extracted from the source
code if a TITLE pseudo-op was used in the assembly process, and a page
number. The heading line requires a minimum of 74 columns. Thus, if you
specify a LEN parameter of less than 74, the heading will either wrap around
on your printer or be truncated - depending on how your printer handles
longer lines. The reference columns will include:

Origin

The filename of the file containing the declaration of the symbol. If
the symbol was declared by a statement located in memory, the ORIGIN will be
listed as 11 $MAIN 11

• Otherwise, the ORIGIN will list the filename of the "*GET
filespec" or "*SEARCH library".

Symbolic Label

This column contains the symbol name of the declaration. If the symbol
was defined by a "DEFL" pseudo-OP, a plus sign, 11+ 11

, will precede the symbol
name to denote this fact. - references will only be printed against one of
the label definitions; however, all declarations will be shown. If the symbol
name was actually the name of a MACRO, it will be prefixed by a pound sign,
11 # 11 and the "value" field will be irrelevant. The symbolic labels are sorted
in ascending alphabetical order.

UTILITY .. XREF
8 - 3

Cross Reference Utility

Value

This column contains the value of the symbol as determined during the
assembly process. If the symbol shows a DEFL definition, the value will be
the first defined value. If a MACRO name is indicated, the value shown is
actually the storage location of the MACRO prototype and model - it will
serve no useful purpose.

Line#

This column contains the line number of the source line declaring or
defining the symbol. The symbol is defined where the symbolic name is used in
the label field of a source statement.

Usage

This column contains the filename of the file containing a reference to
the label. If the label is referenced from a statement resident in memory,
then the filename will be listed as $MAIN. Otherwise it will be the filename
field of the *GET filespec pseudo-OP fetching the file or the library
filespec if a *SEARCH was involved.

Line# of References

All references to the label will be listed in this field. It will
contain the line number of the source statement containing the reference. All
of the references listed on a print line will be contained in the file
identified under the usage column. Whenever the Usage file changes, it will
cause a new line to be generated in the listing.

Statistics

At the conclusion of the cross reference listing, two additional items
of information are listed. The quantity of symbols declared is listed along
with the quantity of references associated with those declarations.

UTILITY - XREF
8 - 4

Tape-to-Disk Utility

T T D

The MISOSYS TTD utility is used for transferring to disk, a source
cassette file that was created with the Radio Shack EDTASM, Microsoft
EDTASM+, or other compatible editor assembler. TTD is not supported under
LOOS 6.x or on the Model II.

To execute the TTD utility, at your DOS ready, simply use the syntax:

TTD { :d}

TTD is used to transfer a source cassette file to disk. The filespec
will be constructed using the filename found on the cassette tape file and
the file extension 11 /ASM". If the optional drive specification, 11 :d" (where
11 d11 is the drive number of the drive receiving the disk file), is entered
with the TTD command line, it will be used in the construction of the file
specification.

TTD will prompt you to ready the cassette via the message:

Ready cassette and <ENTER> ->fora Model I
Ready cassette and enter <H,L> ->fora Model III

The <H,L> entry for Model III users will select either High speed cassette
operation (1500 baud) or Low speed cassette operation (500 baud). Respond to
the prompt by depressing the <ENTER> key if you are a Model I user, or the
correct baud rate character if you are a Model III user.

The cassette source file will be transferred to disk. TTD will then
return to DOS.

UTILITY - TTD
9 - 1

Error Messages

GENERAL
=======

EDAS Version IV recognizes three types of errors. These are:

Command This is an EDAS command syntax error. The
error message is displayed and control is
returned to command mode.

DOS This is an operating system disk I/0 error.
The error message is displayed and control is
returned to command mode.

Assembler These errors may occur while executing an
Assemble command. There are three types:
terminal, fatal, and warning.

DOS disk I/0 errors can also be received during
I/0 error occurs, the assembly will be aborted and
to EDAS command ready.

an assembly. When a disk
control will be returned

Three different types of assembler errors can occur. The types relate to
the severity of the error. These types are:

Terminal

Fatal

Warning

Assembly is terminated and control is returned
to command mode.

Processing of the line containing the error is
immediately stopped and no object code is
generated for that line. Assembly proceeds
with the next statement.

The error message is displayed and assembly of
the line containing the warning continues. The
resulting object code may not be what the
programmer intended.

MESSAGES
10 - 1

Error Messages

Following is a list of all error messages and an explanation of each.

COMMAND ERRORS

l.> Buffer full

There is no more room in the text buffer for adding text.

2.> Bad parameter(s)

Any command line not entered according to the syntax appropriate for
that command will generate this error message. Also, if you attempt to load a
file that is not a valid source code file, this message may be displayed. The
<K>ill command requires entry of a filespec, which if omitted, will also
display this error message.

3.> Illegal command

The first character of the command line entered does not specify a valid
Editor Assembler command.

4.> Line number too large

Renumbering with the specified starting line number and increment would
cause line(s) to be assigned numbers greater than 65529. The renumbering is
not performed. This message would also be displayed if you attempted to
INSERT a line with a line number exceeding 65529.

5.> No room between lines f

The next line number to be generated by INSERT or REPLACE would be
greater than or equal to the line number of the next line of text in the edit
buffer. The increment must be decreased or the lines in the buffer
renumbered.

6.> No such line

A line specified by a command does not exist. The command is ~ot
performed.

MESSAGES
10 - 2

Error Messages

7.> No text in buffer

A command requiring text in the buffer was issued when the text buffer
was empty. The commands <L>oad, <I>nsert, <Q>uery, <S>witch, ranch,
<U>sage, <V>iew, e<X>tend, <K>ill, Dot<.>, <Z>, and ONE <1> can be executed
when the text buffer is empty. All other commands require at least one line
of text to be in the buffer.

8.> String not found

The string being searched for by the <F>ind command could not be found
between the current line and the end of the text buffer. This message will
also be displayed at the completion of a global change command.

DOS ERRORS

The standard DOS error messages will be displayed if the DOS returns an
error code after return from any disk operation. Consult your DOS operating
manual for explanations of those errors. During most error handling, the
abbreviated form of the error message will be displayed. If an I/O error is
detected during an assembly, the long form of the error message will be
displayed. This provides an observance as to which file was affected by the
I/O error.

Any attempt to load or *GET a file that has a line longer than 128
characters will result in "Load file format error".

TERMINAL ERRORS

1.> Memory overlay aborted

During an assembly to memory, a block of code was assembled that would
load into a memory region other than the spare text buffer area. Your program
will not be permitted to load to an address below the end of the text buffer
or above the symbol table. Use the Usage command to locate the first
available memory address. If you are using MACROs, the first available memory
address is indeterminate as the MACRO processor uses the memory area
immediately following the text buffer for a MACRO model and string buffer
storage area.

2.> Symbol table overflow

There is not enough memory for the assembler to generate your program's
symbol table. You have three options:

MESSAGES
l(tJ - 3

Error Messages

l.> Remove comment lines and/or comments following Z-80 code
operands. This may free up enough space to perform the assembly.

2.> Divide your program into two or more modules and assemble them
using the *GET filespec directive.

3.> Extend the text buffer area, expand your source, then assemble it
using the *GET filespec directive.

3.> *GET or *SEARCH error

A "*GET filespec 11

a library member. A
11 *SEARCHes 11

•

or "*SEARCH library 11 assembler directive was
searched library cannot have "*GETs II or

4.> Member definition error: filespec(member)

found in
nested

This is a result of a fetched *SEARCH member not resolving the symbol
reference invoking its fetch.

FATAL ERRORS

1. > B ad l ab e l

The character string found in the label field of the source statement
does not match the criteria specified under ASSEMBLY LANGUAGE INFO - LABELS.

2.> Expression error

The operand field contains an ill-formed expression.

3.> Illegal addressing mode

The operand field does not specify an addressing mode which is legal
with the specified OPCODE.

4.> Illegal opcode

The character string found in the opcode field of the source statement
is not a recognized instructicn mnemonic, assembler pseudo-op, or MACRO name.

MESSAGES
10 - 4

Error Messages

5.> Missing information

Information vital to the correct assembly of the source line was not
provided. The OPCODE is missing or the operands are not completely specified.

6.> Too many nested *GETs

*GET filespec nesting exceeds the number of levels supported. The *GET
will be ignored.

7.> Unclosed conditional

The II END II statement or
conditional block was still
11 ENDIF 11

•

8.> ENDIF without IF

end of source
pend i n g . You r

was reached and an
program is missing

open "IF"
the closing

An 11 ENDIF 11 pseudo-op was detected without a corresponding conditional
11 IF 11 or 11 IFxx 11 in effect. The 11 ENDIF 11 will be ignored.

9.> ELSE without IF

An 11 ELSE 11 statement was detected without a preceding 11 IF 11 conditional
segment.

10.> Filespec required

A *GET or *SEARCH directive was detected but the statement did not
contain the required file specification. The *GET or *SEARCH will be ignored.

11.> Bad parameter(s)

When output preceding a MACRO definition, it implies an error in the
parameters of a MACRO.

12.> Nested MACRO ignored

A macro definition statement was nested in the model of another macro.

MESSAGES
10 - 5

Error Messages

13.> Missing MACRO name

The name field of the macro definition statement did not contain the
macro name. The macro will not be defined.

14.> ENDM without MACRO

An ENDM pseudo-OP was detected while not in a macro definition phase. It
will be ignored.

15.> Too many parameters

In a macro call, the number of parameters passed exceeded the number
defined for the macro. The macro call will not be expanded.

16.> Too many nested MACROs

The number of pending nested macro calls exceeds the current nest level
supported. The macro call will not be expanded.

17.> MACRO forward reference

A macro call was detected prior to the definition of the macro. The
macro call will not be expanded since gross phase errors would result.

18.> Multiply defined MACRO

A macro definition statement was detected for a macro already defined.
The subsequent definition will be ignored.

WARNINGS
========

l.> Branch out of range

The destination of a relative jump instruction (JR or
within the proper range for that instruction. The instruction is
a branch to itself by forcing the offset to hex X'FE'.

2.> Field overflow

DJNZ) is not
assembled as

A number or expression result specified in the operand field is too
large for the specified instruction operand. The result is truncated to the

MESSAGES
10 - 6

Error Messages

largest allowable number of bits. This error would also be output during a
global change if a resultant line would exceed 128 characters.

3.> Multiply defined symbol

The operand field contains a reference to the
defined in another line. The first definition of
assemble the line.

4.> Multiple definition

symbol which
the symbol

has been
is used to

The source line is attempting to illegally redefine a symbol. The
original definition of the symbol is retained. Symbols may only be redefined
by the DEFL pseudo-OP and only if they were originally defined by DEFL.

5.> No END statement

The program END statement is missing. Note that if your program is
missing the "END" statement, EDAS cannot detect an unclosed conditional.
Also, be aware that if your program has a FALSE unclosed conditional, then
the 11 END 11 statement wi 11 NOT be detectable - even if present.

6.> Undefined symbol

The operand field contains a reference to a symbol which has not been
defined. A value of zero is used for the undefined symbol.

MESSAGES
10 - 7

Technical Specifications

OBJECT FILE FORMAT

The disk file object code format consists of a header record, an
optional comment record, one or more load block records, and a transfer
address record. The specific formats of these records are as follows:

Header Record

The file header record consists of the hex byte X1 05 1 (record type)
which indicates the header field of an object file. It is followed by the
header length byte which indicates the length of the header data followingo
The length of the header data is constant in EDAS and is six bytes. The data
is constructed as the first six bytes of the object code file name field and
is filled out with spaces if the file name is less than six characters.

Comment Record

This record is optional. It is generated by the 11 COM 11 pseudo-OP. It
consists of a record type byte of X1 lF 1 followed by a length byte which is
the length of the comment. The comment data, itself, follows.

Load Block Record

The load block record starts with a record type code of X101 1 which
indicates it is a load block. A 1-byte length is next. This indicates the
length of the object code data plus the 2-byte block load address. The length
is encoded as a modulo 256 value (object code length of 253 = X1 FF 1

, object
code length of 254 = X100 1

, object code length of 256 will show as X102 1
).

The block length byte is followed by the 2-byte block load address which
is the address that will be loaded with the first byte of the block.

Finally the object code block immediately follows for as many bytes as
two less than the block length.

Transfer Address Record

The Transfer address record (TRAADR) starts with a record type of X1 02 1
•

An X102 1 is written to indicate the length of the entry point address. This
is then followed by the 2-byte entry point or transfer address generated from
the label or constant in the operand field of the assembler source END
statement. As is the case with all 16-bit data values, the TRAADR data has
the low-order byte of the address followed by the high-order byte.

TECH INFO
11 - 1

Technical Specifications

SOURCE FILE FORMAT

The source code file format used by EDAS has no header nor line numbers.
Headers and numbers are entirely optional and can be generated with
appropriate switches in the <W>rite command. The formats are as follows:

Header Record

A header record as described under "Object file format" is optionally
used for source files with the exception that the first byte is a hex X1 O3 1

(X 153 1
- with bit 7 set) to identify the file as source, immediately followed

by a 6-character name (the name length byte is omitted). Files written with
11 W+ 11 contain this header.

Text Lines

Text lines are written in ASCII each composed of an optional 5-character
line number (bit 7 is set), a space, the text line, ending with an <ENTER>
(X 1(JD 1

). Files written with the 11 W# 11 command incorporate both the 5-character
line number and following space.

End-of-File Mark

The file end is indicated by an end-of-file mark of X1 lA 1 which would be
in the first character position of a text line (or 1st byte of the line
number if line numbered files are used).

REFERENCE DATA FILE FORMAT
--========================

The reference data file is a compressed collection of data corresponding
to each symbol definition and reference. The file contains a title record,
and definition/ reference records. The format of these records is as follows:

Title Record

The title record is always present even though the assembler source file
stream may or may not have supplied a TITLE pseudo-OP. The title record is 28
characters long. If the source files did not contain a TITLE pseudo-OP, the
record will be filled with spaces.

Definition/Reference Records

These records contain the data for either a symbol definition or
reference. It is composed of a filename field, a line number field, a type

TECH INFO
11 - 2

Technical Specifications

field, a value field (omitted for references), and a symbol name field. These
fields are defined as follows:

F il en ame F i e 1 d

This field will be either an eight character filename or a hex X1 22 1
• If

a hex X'22', then the filename reference is the same as the previous record.

Line Number Field

This field contains the line number of the definition or reference
statement in low-order high-order form.

Type Field

The type field contains an X'00' for a reference, an X'01' for a
definition, or an X'02' for a DEFL defined symbol.

Value Field
----------- ~

The value field contains the defined value of the symbol. This field is
omitted for references (type field= 0).

Name Field

The name field contains the symbol name.
carriage return (X 10D'). If the symbol is the
character of the name has the high-order bit set.

TECH INFO
11 - 3

It is terminated with a
name of a macro, the first

Technical Specifications

LINKAGE TO DEBUGGING (Model I/III or LOOS 6.x only)

In order to facilitate the debugging of user generated programs, a
number of features have been built into EOAS. It provides the option of
assembling source code directly to memory. It provides a command to transfer
control to a user-supplied address (via the ranch command).

A re-entry address to the Editor Assembler has been provided. If at any
time during the debugging phase, you want to return to the Editor Assembler
without reinitializing it (which would have deleted the entire text buffer),
and are under the control of a debugging utility that does not utilize memory
from X'54~0' (X'3200' under LOOS 6.x) to the protected HIGH$, issue a jump
command to X'5803' (X 13603 1 under LOOS 6.x). Alternately, you can provide a
"JP 5803H 11 (or JP 3603H under LOOS 6.x) in your program as an exit and return
to EOAS. A return to the Editor Assembler will be performed and the text
buffer pointers will be maintained. If your program has maintained the
integrity of the stack pointer, a RET instruction will return to the EDAS
command prompt as the top of the stack contains the prompt address when an
exit is made via the 11 B11 ranch command.

EOAS disables the automatic entry to DEBUG on <BREAK> to avoid
inadvertantly entering DEBUG by depressing <BREAK> to exit an <I>nsert or
abort an assembly. In order to enter DEBUG directly from EDAS, perform a
ranch command to address X'30'.

TECH INFO
11 - 4

SAID - Full Screen Text Editor

SAID - Screen Editor

SAID is a full-screen text editor that can be used to edit assembler
source, C-language source, or other ASCII text files. When used under TRSDOS
6.x on a 128K machine, SAID provides you three editing buffers and the added
capability of moving blocks of text from one buffer to another.

Installing SAID [running SAIDINSJ

SAID is installed in your system by invoking the SAIDINS/CMD program via
the command,

SAIDINS filespec

where "fi l espec II should be SAID/CMD - the name of the screen editor - unless
you renamed SAID/CMD to some other name. SAID is supplied with the keyboard
mapped to support all of the SAID commands with the exception of function 34.
This mapping can be tailored to your specifications during the installation
of SAID while SAIDINS/CMD is running. This program must be used first to
establish certain DOS interfacing needed before SAID can be used. The
following function codes are used during the installation of SAID. They
designate the function numbers corresponding to the thirty-six separate
command functions in SAID.

1 Cursor left 19 Meta
2 Cursor right 20 Previous Page
3 Cursor up 21 Next Page
4 Cursor down 22 Find
5 Beginning of line 23 Replace
6 End of line 24 Again
7 Top of file 25 A 11
8 End of file 26 Unmark
9 Insert a tab 27 Hex

10 Insert mode toggle 28 Quote
11 Line 29 Copy block
12 Delete 30 Move block
13 Word 31 DOS command
14 Block 32 Print
15 Load 33 Exit
16 Save 34 Delete previous character
17 Macro 35 Swap buffer with external buffer # 1
18 File 36 Swap buffer with external buffer# 2

The TRSDOS 6.x version of SAID uses the DOS keyboard driver and makes use of
the type-ahead supported by the DOS. The Model I/III version of SAID contains
a built in keyboard driver which supports type-ahead as well as a complete
ASCII keyboard. The installation program can be used to override this
built-in keyboard driver for LOOS users. The Model I/III keyboard driver uses
various key combinations to produce the extra characters not available on the
TRS-80 keyboard. These are as follows:

SAID - 1

SAID - Full Screen Text Editor

<CLE AR> pl us <CLEAR><SHIFT> plus
<,> [(left bracket) <,> { (left brace)
<!> \ (reverse slash) </> I (vertical bar)
<.> J (right bracket) <.> } (right brace)
<;> ~ (carat) <;> (tilde)
<ENTER> (underline) <ENTER> (delete)

<SHIFT><DOWN ARROW> (control - use with A-Z)

Unless altered by SAIDINS, SAID command functions are invoked with the
following keyboard depressions [note that multiple key depressions are shown
as connected sequences of keys within angle brackets, i.e. <CLEAR><4> means
simultaneously depress the CLEAR key and the 4 key]

Invoking SAID

SAID is invoked via:

SAID [filespec] (parml,parm2, .•.)

filespec The name of the file to edit. If filespec is
not found, SAID prompts to create it.
Command line filespec entry is optional.

ASM Tabs default to 8. File extension defaults
to 11 /ASM 11

• X1 lA 1 stripped from end of file
on read and replaced on write.

CCC Tabs default to 4. File extension defaults
to 11 /CCC 11

• X'lA' stripped from end of file
on read and replaced on write.

EXT=string Sets the default file extension.

TAB=nn Set default tab width.

Abbreviations: A=ASM, C=CCC, E=EXT, T=TAB

Note: EXT parameter not usable under TRSDOS 1.3 and 2.3.

Cursor Movement

TRSDOS 1.3 users must enter ASM and CCC parms as
parm=OFFFF and TAB entry in hexadecimal, Oxx.

Cursor movement relates to the re-positioning of the cursor on the
screen. 11 Up 11 movements invoked while the cursor is on the top line of the
screen cause the text to be scrolled downward. Conversely, "down II movements
invoked while the cursor is on the bottom text line will cause the text to be
scrolled upward.

SAID - 2

Left one position
Right one position
Up one line
Down one 1 ine
Beginning of next word
Next Screen Page
Previous Screen Page
Start of line
End of line
Start of file
End of file
Insert a tab

Modes

SAID - Full Screen Text Editor

<LEFT ARROW>
<RIGHT ARROW>
<UP ARROW>
< DOWN ARROW>
<CLEAR><4>
<CLEAR><->
<CLEAR><:>
<SHIFT><LEFT ARROW>
<SHIFT><RIGHT ARROW>
<CLEAR><UP ARROW>
<CLEAR><DOWN ARROW>
<CLEAR><RIGHT ARROW>

SAID operates in various modes. In normal operation, entered text
overtypes any text beneath the cursor. When toggled into "insert" mode, all
text to the right of the cursor will be pushed down one character as each
character is entered. Although a TAB character occupies one position in the
text buffer, it is expanded on the screen via spacing to the next tab stop.
In line insert mode, a line of spaces is inserted into the text at the cursor
position. A new line will automatically be inserted when you attempt to type
past the last position of the opened line. Hex insertion mode can be invoked
regardless of the state of insert mode. The hex mode allows you to enter all
256 character values by the entry of two hexadecimal digits per character. In
quote insert mode, all cursor movement functions are defeated and the
character values used for the functions are entered into the text any time a
cursor movement key is depressed.

Insert/overtype mode
Line insert
Hex insert
Quote insert

Deletions

<CLEAR><l>
<CLEAR><2> - <Break> to cancel
<CLEAR><SHIFT><6> - <Break> to cancel
<CLEAR><SHIFT><7> - <Break> to cancel

This section relates to the various operations of deleting text. When
you invoke a deletion, it is preserved by SIU D and can be res to red vi a the
UNDELETE function; however, only the LAST deletion performed is saved.

Delete character
Delete word
Delete line
Delete block

Delete to top
Delete to end
Delete all

Undelete [oops function]

<CLEAR><3>
<CLEAR><3> followed by <CLEAR><4>
<CLEAR><3> followed by <CLEAR><2>
Mark the block, position cursor inside,
then <CLEAR><3> followed by <CLEAR><5>
<CLEAR><3> followed by <CLEAR><UP ARROW>
<CLEAR><3> followed by <CLEAR><DOWN ARROW>
<CLEAR><3> followed by <CLEAR><SHIFT><4>.
Deletes entire context except macro.
<CLEAR><SHIFT><S> followed by <CLEAR><3>

SAID - 3

SAID - Full Screen Text Editor

Macro functions

SAID supports a macro key which can be soft programmed (or reprogrammed)
by you throughout the operation of SAID. This key can store up to 64
keystrokes. Its use for capturing a series of key entries for repetitive
entry will help in speeding up your editing and minimizing key entry. Note
that invoking the macro will cause it to repeat according to the repeat rate
count set with the Meta function. This repeat count is set to one when you
store a series of keystrokes for the macro key.

Invoke current macro
Store a macro

1/0 functions

<CLEAR>
<CLEAR><6> followed by <CLEAR>; The Macro
will be saved until the next <CLEAR> or
until 64 characters are entered.

This section relates to the loading or saving of text as well as
printing out the text buffer or a portion of it. Note that when you are
merging two or more files into the text buffer, SAID will load the file at
the cursor location - be it the beginning of the text, the middle of the
text, or the end of the text. When you invoke "exit", SAID will prompt you to
save any buffer which contains text. Note that when you save a file or exit,
you will be prompted for the filespec. Respond via <ENTER> to use the current
filespec shown in the status line or enter a new filespec which will become
the new current one.

Print a block

Print a file [in memory]
Load file at cursor position

Save file under current name
Save block

Exit
Change filespec

Block fun ct ions

Mark block, then <CLEAR><SHIFT><:>,
followed by <CLEAR><S> followed by <0-9>
<CLEAR><SHIFT><:> followed by <CLEAR><9>
<CLEAR><6> followed by <CLEAR><9> then the
filespec in response to the prompt.
<CLEAR><?> followed by <CLEAR><9>
Mark block, then <CLEAR><?> followed by
<CLEAR><5> followed by filename, then <0-9>.
<CLEAR><SHIFT><->
<CLEAR><9> followed by the filespec

SAID allows you to designate up to ten distinctly labeled blocks. These
are numbered from 0-9. You can have more than one block designated with the
same number; however, in block copy or block move operations, the first such
numbered block found in the text when searched from the beginning of the file
will be used for the copy or move operation. Blocks are marked by indicating
a START BLOCK and an END BLOCK (the end must appear in the text after the
start).

Start block
End block

<CLEAR><S> followed by <0-9>
<CLEAR><5> followed by <CLEAR><DOWN ARROW>
or <CLEAR><S> followed by <E>.

SAID - 4

Copy block

Move b 1 ock

Unmark all blocks

Search and replace

SAID - Full Screen Text Editor

Mark block, position to destination, then
<CLEAR><SHIFT><8> followed by <0-9>
Mark block, position to destination, then
<CLEAR><SHIFT><9> followed by <0-9>
<CLEAR><SHIFT><5> followed by <CLEAR><5>

This section relates to the facility for finding character strings in
the text and optionally replacing them with another string. The replacement
string may be null. If any character in the search string is in uppercase
then the search will be case sensitive (Le. 11 A11 and 11 a 11 are distinct),
otherwise the search will be case insensitive (i..e. 11 A11 and 11 a11 are
considered to be the same character). The search string may contain a
wildcard character or characters which match all character values (the
wildcard character is specified during the installation via SAIDINS). The
replacement string may also contain a wildcard character or characters which
indicates that the character in that position in the search string will be
re-used in the replacement string. Both the search and replacement strings
may contain hexadecimal values via entry of a 1 %1 followed by two hexadecimal
digits. "Again" finds the next matching string or replaces the next matching
string. "All II invokes the search or replace on all matching strings. Note
that the meta command provides an option to force a query before replace
which is also installable with SAIDINS.

Search
Reverse search

Replace

Again
A 11

Mi see 11 aneous

Invoke a DOS command

<CLEAR><SHIFT><l> followed by the search string
<CLEAR><SHIFT><5> followed by <CLEAR><SHIFT><l>
followed by the search string
Invoke a SEARCH, then <CLEAR><SHIFT><2>
followed by the replacement string.
<CLEAR><SHIFT><3>
<CLEAR><SHIFT><4>

<CLEAR><SHIFT><O>

This allows you to enter any DOS command that is acceptable at DOS Ready
with the exception of any command which alters HIGH$.

Invoke a Meta command <CLEAR><O> followed by [C,E,H,M,O,R,T,7,UP,DNJ

This gives you access to an additional set of infrequently accessed
commands. The meta command letter determines the function invoked.

C
E

H
M

s
C

Calculator
External memory [TRSDOS 6.x version only]

swap memory bank and full context
copy a block from external memory bank

Toggles help display
Set macro repeat count

SAID - 5

0

R
T
7

A
C
T

SAID - Full Screen Text Editor

Set SAID options
set ASM mode in current buffer
set CCC mode in current buffer
set default extension in current buffer

Replace options: query before replace

<UP ARROW>
<DOWN ARROW>

Set tabs position (i.e. every nth column)
Strip bit 7 off all text in buffer
Uppercase next word
Lowercase next word

Calculator

SAID contains a built-in reverse polish notation (infix) calculator
which supports the following three types of numbers:

xxxxB - Binary (i.e. 101101)
xxxxD - Decimal (default, i.e. 45)
xxxxH - Hexadecimal (i.e. 2d)

The following functions are supported:

* Mu lt i pl i cat i on
I Division
+ Addition

Subtraction (negation is not supported)
& Logical AND
I Logical OR

Logical XOR
Used to denote the previous result

If you wish to output the answer in any base other than decimal then follow
the 1 =1 with a 1 81 or an 1 H1 to specify binary or hexadecimal. Entering a
period will cause the last result to be substituted. Note the following
sample calculation which multiplies 22 base 16 by 1111 base 2, then adds 2
base 10 and outputs the result in decimal:

22h llllb * 2 +<ENTER>

To output the same result in binary, specify 11 =b 11

SAID - 6

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf

